{"title":"[Appropriate use of the ELN guidelines based on results of real-world genetic analysis in Japanese patients with AML].","authors":"Satoshi Wakita","doi":"10.11406/rinketsu.65.676","DOIUrl":"10.11406/rinketsu.65.676","url":null,"abstract":"<p><p>Researchers in the field of acute myeloid leukemia have long sought to establish a prognostic stratification system for clinical use that combines multiple genetic mutations. In 2022, the European LeukemiaNet (ELN) proposed a new prognostic model incorporating new genetic mutations. However, Japanese National Health insurance only recently began covering clinical genetic analysis for AML. We established the Multi-center Collaborative Program for Gene Sequencing of Japanese AML (GS-JAML) to contribute to clinical practice by providing rapid genetic analysis results. Retrospective analysis of this research program revealed (1) the clinical significance of CEBPA-bZIP mutations, and (2) the clinical significance of DNMT3A mutations in NPM1 mutated AML.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Budd-Chiari syndrome and JAK2 gene mutation].","authors":"Shuichi Shirane","doi":"10.11406/rinketsu.65.790","DOIUrl":"10.11406/rinketsu.65.790","url":null,"abstract":"<p><p>Budd-Chiari syndrome (BCS) is a rare vascular disorder characterized by obstruction of hepatic venous outflow, culminating in elevated hepatic and portal venous pressure. BCS is associated with myeloproliferative neoplasms (MPN) in 40% of cases, which is significantly higher than the rate observed in other venous thrombotic conditions, and suggests that MPN may contribute to the etiology of BCS. In particular, the JAK2 V617F mutation has recently attracted substantial attention, given its profound association with thrombogenesis, mechanically implicated through endothelial damage, increased blood cell adhesion, and facilitation of neutrophil extracellular trap formation. A common treatment approach consists of anticoagulation for prevention and treatment of thrombosis, and cytoreductive therapy targeting MPN. However, as no definitive evidence exists for this approach, a bespoke therapeutic strategy tailored to individual patient profiles is required.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Development and prospects of bispecific antibodies for multiple myeloma].","authors":"Junichiro Yuda","doi":"10.11406/rinketsu.65.1049","DOIUrl":"10.11406/rinketsu.65.1049","url":null,"abstract":"<p><p>Patients with triple-class refractory multiple myeloma once had a poor prognosis, but recently developed bispecific antibodies (bsAbs) targeting B-cell maturation antigen (BCMA), G protein-coupled receptor 5D (GPRC5D), and Fc receptor-homolog 5 (FcRH5) have shown significant clinical activity in these patients. However, responses to bsAbs are not universal, and resistance often develops during therapy. Mechanisms that mediate resistance may be tumor-intrinsic or immune-dependent. Tumor-intrinsic factors include antigen loss (biallelic or functional) due to deletion or mutation of target genes, increased soluble BCMA (for BCMA targeting bsAbs), high tumor burden, and extramedullary disease. Immune-mediated resistance highly depends on T cell fitness and the resistant immune environment. This article describes bispecific antibodies against multiple myeloma that are currently being developed.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Development of hematopoietic stem cell-targeted gene therapy].","authors":"Naoya Uchida","doi":"10.11406/rinketsu.65.1174","DOIUrl":"10.11406/rinketsu.65.1174","url":null,"abstract":"<p><p>Hematopoietic stem cell (HSC)-targeted gene therapy is curative for various genetic blood diseases, and its efficacy has been demonstrated in recent clinical trials. HSCs have self-renewal and hematopoietic multipotency; therefore, repairing pathological mutations or defects in HSCs allows for a lifelong cure with a single treatment. Autologous HSC gene therapy has been developed by lentiviral gene addition or gene editing, and is an option for most patients because it does not require a compatible donor. Current HSC gene therapy is based on ex vivo methods, in which patient HSCs are harvested, genetically modified ex vivo, and autologously transplanted into patients. However, the complexity of this process and the high cost of treatment are hindering the spread of gene therapy. Therefore, in vivo HSC gene therapy is being developed to deliver gene therapy tools directly into bone marrow HSCs by administration without ex vivo culture.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Mitochondrial metabolism in AML cells].","authors":"Yoko Tabe","doi":"10.11406/rinketsu.65.961","DOIUrl":"10.11406/rinketsu.65.961","url":null,"abstract":"<p><p>Mitochondrial metabolic dependencies characteristic of acute myeloid leukemia (AML) have recently been identified, demonstrating that metabolic enzymes regulate AML gene expression and control cell differentiation and stemness. These mitochondrial metabolic adaptations occur independently of underlying genomic abnormalities and contribute to chemotherapy resistance and relapse. Mitochondrial alterations also lead to metabolic vulnerability of AML cells, whose metabolism is characterized by dependence on oxidative phosphorylation, fatty acid oxidation, reactive oxygen species (ROS) production, and mitochondrial dynamics. Currently, mitochondrial properties of AML cells and leukemia stem cells are being investigated, focusing on metabolism, signal transduction, mitochondrial respiration, ROS generation, and mitophagy. In addition, mitochondria-targeted agents have shown promising results in clinical trials. This paper outlines recent findings from preclinical and clinical trials on the utility of agents targeting mitochondria-related molecules and metabolic pathways and their efficacy in combination with existing chemotherapies.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Molecular profiling of myeloid/natural killer (NK) cell precursor acute leukemia].","authors":"Masatoshi Takagi, Akira Nishimura","doi":"10.11406/rinketsu.65.1179","DOIUrl":"https://doi.org/10.11406/rinketsu.65.1179","url":null,"abstract":"<p><p>Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described based on its clinical phenotype and immunophenotype, and proposed as a unique leukemia entity. However, due to its rarity and lack of defined distinctive molecular characteristics, there is currently no international consensus on this disease concept. We performed multi-omics analysis and revealed that MNKPL is distinct from acute myeloid leukemia, T-cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia. NOTCH1 and RUNX3 activation and BCL11B downregulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, our single-cell analysis using MNKPL cells suggested that NK cells and myeloid cells share common progenitor cells. Our retrospective case study uncovered that outcomes of MNKPL are unsatisfactory, even with hematopoietic cell transplantation. Multi-omics analysis and in vitro drug sensitivity assays revealed increased sensitivity to L-asparaginase and reduced levels of asparagine synthetase, supporting the clinically observed effectiveness of L-asparaginase.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Update on treatment strategies for mantle cell lymphoma].","authors":"Suguru Fukuhara","doi":"10.11406/rinketsu.65.1012","DOIUrl":"https://doi.org/10.11406/rinketsu.65.1012","url":null,"abstract":"<p><p>Mantle cell lymphoma (MCL) is a type of lymphoid malignancy that is rare in Japan. MCL is refractory to conventional chemotherapy and has dismal outcomes. Nonetheless, the prognosis of MCL has gradually improved with the advent of autologous stem cell transplantation and BTK inhibitors. First-line therapies incorporating BTK inhibitors are currently under development, and are expected to further improve the prognosis. Nevertheless, subsets with poor prognosis have been identified, including p53 abnormalities (TP53 mutations or deletions), blastoid variant, high MIPI-c, and POD24, and these show resistance to conventional treatments including BTK inhibitors. To overcome these challenges, novel therapies such as CAR-T therapy and combination therapy with BTK and BCL2 inhibitors are being developed, and should soon become clinically available in Japan. The therapeutic landscape for MCL is evolving dynamically, and this article will discuss the future of MCL treatment strategies in Japan.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"","authors":"","doi":"10.11406/rinketsu.65.1245","DOIUrl":"https://doi.org/10.11406/rinketsu.65.1245","url":null,"abstract":"","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Genetic abnormalities in bone marrow failure].","authors":"Kohei Hosokawa","doi":"10.11406/rinketsu.65.1277","DOIUrl":"https://doi.org/10.11406/rinketsu.65.1277","url":null,"abstract":"<p><p>Bone marrow (BM) failure is a condition characterized by peripheral pancytopenia resulting from decreased hematopoiesis in the BM. It includes congenital disorders such as Fanconi anemia (FA), as well as acquired conditions such as acquired aplastic anemia (AA), myelodysplastic syndrome (MDS), and paroxysmal nocturnal hemoglobinuria (PNH). AA presents with pancytopenia and BM hypoplasia, primarily triggered by an autoimmune mechanism involving T cells that damage hematopoietic stem cells (HSCs). Genomic investigations utilizing next-generation sequencing or SNP arrays have revealed that clonal hematopoiesis by HSCs with genetic aberrations, including PIGA, DNMT3A, ASXL1, BCOR/BCORL1, copy-number neutral LOH of chromosome 6p (6pLOH), and somatic mutations in HLA class I alleles are prevalent in AA patients. Recent studies have identified somatic mutations in genes associated with the JAK-STAT and MAPK pathways in T cells of AA patients. Genomic abnormalities in AA differ from those observed in MDS and age-related clonal hematopoiesis. Notably, the presence of PNH-type cells and HLA class I allele-lacking cells represent two major instances of escape hematopoiesis, which indicate the presence of HSCs evading autoimmune T cell attacks. These findings provide crucial insights into the immune pathophysiology of BM failure.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Improvement of tissue fibrosis in TAFRO syndrome by prednisolone monotherapy].","authors":"Takao Kashiwagi, Yuki Kashiwagi, Tomohide Suzuki, Manami Shingu, Sayaka Kashiwagi, Tamaki Hirata, Junko Hori, Keikichi Miyata, Miho Takechi, Minoru Kishi, Takamasa Ohnishi, Yoshio Katayama, Masahide Iwai, Toshimitsu Matsui","doi":"10.11406/rinketsu.65.237","DOIUrl":"https://doi.org/10.11406/rinketsu.65.237","url":null,"abstract":"<p><p>We report the case of a 48-year-old man who presented with fatigue and weight loss. A local physician observed elevated alkaline phosphatase levels, anemia, thrombocytopenia, and renal dysfunction. Fever also appeared, and the patient was admitted to our hospital. Computed tomography revealed hepatosplenomegaly, pleural and ascitic fluid, and left axillary lymphadenopathy. Bone marrow biopsy indicated hyperplasia with increased megakaryocytes and reticulin fibrosis. Axillary lymph node biopsy showed Castleman's disease-like features. Liver biopsy revealed proliferation of reticulin fibrosis. Therefore, TAFRO syndrome was diagnosed and treatment with 1 mg/kg prednisolone was started. Anemia and thrombocytopenia improved, and after 24 weeks of treatment, serum hyaluronic acid and type IV collagen decreased to the normal range. Bone marrow biopsy after 18 weeks of treatment showed decreased reticular fibers. In TAFRO syndrome, improvement of liver and bone marrow fibrosis can be expected with adequate intervention, and serum hyaluronic acid and type IV collagen are useful for evaluating fibrosis.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}