HematoPub Date : 2021-12-09DOI: 10.3390/hemato2040052
K. Thoren
{"title":"Will Mass Spectrometry Replace Current Techniques for Both Routine Monitoring and MRD Detection in Multiple Myeloma?","authors":"K. Thoren","doi":"10.3390/hemato2040052","DOIUrl":"https://doi.org/10.3390/hemato2040052","url":null,"abstract":"In recent years, mass spectrometry has been increasingly used for the detection of monoclonal proteins in serum. Mass spectrometry is more analytically sensitive than serum protein electrophoresis and immunofixation, can help distinguish therapeutic monoclonal antibodies from M-proteins, and can detect the presence of post-translational modifications. Mass spectrometry also shows promise as a less-invasive, peripheral-blood-based test for detecting minimal residual disease in multiple myeloma. Studies comparing the clinical utility of mass spectrometry to current blood- and bone-marrow-based techniques have been conducted. Although still primarily limited to research settings, clinical laboratories are starting to adopt this technique for patient care. This review will discuss the current status of mass spectrometry testing for multiple myeloma, the benefits and challenges of this technique, and how it may be incorporated into clinical practice in the future.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49351294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-12-09DOI: 10.3390/hemato2040051
R. Shallis, M. Stahl, J. Bewersdorf, A. Zeidan
{"title":"The Current Understanding of and Treatment Paradigm for Newly-Diagnosed TP53-Mutated Acute Myeloid Leukemia","authors":"R. Shallis, M. Stahl, J. Bewersdorf, A. Zeidan","doi":"10.3390/hemato2040051","DOIUrl":"https://doi.org/10.3390/hemato2040051","url":null,"abstract":"About 10% of newly diagnosed and 20–30% of therapy-related acute myeloid leukemia (AML) harbors a TP53 mutation (mTP53-AML). Unfortunately, this biological subset predicts one of the worst prognoses among patients with AML, specifically a median overall survival of about 7 months with fewer than 10% of patients eventually cured of disease. Although remission rates appear to be increased with venetoclax-based, less-intensive regimens when compared with contemporary, intensive chemotherapy (55–65% vs. 40%), survival appears to be no different between the two approaches. Attempts to discern whether or not the prognosis of mTP53-AML is universally poor have centered around the study of concurrent cytogenetic risk and predicted TP53 allelic state, measurable residual disease status and the impact of conditioning intensity for patients proceeding to allogeneic hematopoietic stem cell transplantation. We discuss these considerations in this review and offer the current treatment approach to TP53-mutated AML.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48089883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-12-07DOI: 10.3390/hemato2040050
U. Hegenbart, M. Raab, S. Schönland
{"title":"Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy","authors":"U. Hegenbart, M. Raab, S. Schönland","doi":"10.3390/hemato2040050","DOIUrl":"https://doi.org/10.3390/hemato2040050","url":null,"abstract":"Systemic amyloid light chain (AL) amyloidosis is a rare protein deposition disease caused by a clonal B cell disorder of the bone marrow. The underlying diseases can be plasma cell disorders (monoclonal gammopathy of clinical significance, smoldering or symptomatic myeloma) or B cell non-Hodgkin’s lymphoma (e.g., Waldenstrom’s disease or marginal zone lymphoma) with secretory activity. It is crucial to characterize the underlying disease very precisely as the treatment of AL amyloidosis is directed against the (often small) B cell clone. Finally, the detection of cytogenetic aberrations of the plasma cell clone will likely play an important role for choosing an effective drug in the near future.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43056249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-12-02DOI: 10.3390/hemato2040049
M. Revheim, C. Stokke, J. N. Nørgaard, Hilde Feiring Phillips, A. Sherwani, F. Schjesvold, James Connelly
{"title":"New Targets for PET Imaging of Myeloma","authors":"M. Revheim, C. Stokke, J. N. Nørgaard, Hilde Feiring Phillips, A. Sherwani, F. Schjesvold, James Connelly","doi":"10.3390/hemato2040049","DOIUrl":"https://doi.org/10.3390/hemato2040049","url":null,"abstract":"Recent advances in the treatment of multiple myeloma (MM) have increased the need for accurate diagnosis and detection of minimal residual disease (MRD), disease characterization and localization, and response evaluation and prognostication. Positron emission tomography (PET)/computed tomography (CT) imaging combines molecular and morphological information and has been shown to be especially valuable in this disease. The most frequently used PET tracer in MM is the glucose analog 18F-fluorodeoxyglucose ([18F]FDG). [18F]FDG PET/CT has a sensitivity for detection of MM between 80% to 100% and is currently the main imaging modality for assessing treatment response and for determining MRD. However, 18F-FDG PET/CT has some limitations, and imaging with alternative tracers that may overcome these constraints should be further explored. This article discusses new targets for PET/CT imaging in the assessment of MM.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44826204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-12-01Epub Date: 2021-10-05DOI: 10.3390/hemato2040042
Gareth J Morgan, Joel N Buxbaum, Jeffery W Kelly
{"title":"Light Chain Stabilization: A Therapeutic Approach to Ameliorate AL Amyloidosis.","authors":"Gareth J Morgan, Joel N Buxbaum, Jeffery W Kelly","doi":"10.3390/hemato2040042","DOIUrl":"https://doi.org/10.3390/hemato2040042","url":null,"abstract":"<p><p>Non-native immunoglobulin light chain conformations, including aggregates, appear to cause light chain amyloidosis pathology. Despite significant progress in pharmacological eradication of the neoplastic plasma cells that secrete these light chains, in many patients impaired organ function remains. The impairment is apparently due to a subset of resistant plasma cells that continue to secrete misfolding-prone light chains. These light chains are susceptible to the proteolytic cleavage that may enable light chain aggregation. We propose that small molecules that preferentially bind to the natively folded state of full-length light chains could act as pharmacological kinetic stabilizers, protecting light chains against unfolding, proteolysis and aggregation. Although the sequence of the pathological light chain is unique to each patient, fortunately light chains have highly conserved residues that form binding sites for small molecule kinetic stabilizers. We envision that such stabilizers could complement existing and emerging therapies to benefit light chain amyloidosis patients.</p>","PeriodicalId":93705,"journal":{"name":"Hemato","volume":"2 4","pages":"645-659"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40402938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-11-24DOI: 10.3390/hemato2040047
M. Bower, A. Carbone
{"title":"KSHV/HHV8-Associated Lymphoproliferative Disorders: Lessons Learnt from People Living with HIV","authors":"M. Bower, A. Carbone","doi":"10.3390/hemato2040047","DOIUrl":"https://doi.org/10.3390/hemato2040047","url":null,"abstract":"In 1992, Kaposi sarcoma herpesvirus (KSHV/HHV8) was discovered and identified as the causative agent for Kaposi sarcoma. Subsequently, the presence of this virus has been detected in a number of lymphoproliferative disorders in people living with HIV (PLWH), including: KSHV-associated multicentric Castleman disease, primary effusion lymphoma, KSHV-positive diffuse large B-cell lymphoma, and germinotropic lymphoproliferative disorder. Each of these rare entities has subsequently been diagnosed in HIV-negative individuals. The recognition of some of these KSHV/HHV8-associated lymphoproliferative disorders has led to their inclusion in the WHO classification of lymphomas in 2008 and the revision of 2016; however, further revision is under way to update the classification. The relatively recent recognition of these lymphoproliferative disorders and their low incidence, particularly in the HIV-negative population, means that there is little published evidence and consensus on their clinical features and management. The publication of a new WHO classification of lymphomas should yield diagnostic clarity, providing an impetus for retrospective case series and prospective clinical trials in these KSHV/HHV8-associated lymphoproliferative disorders.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49492785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-11-22DOI: 10.3390/hemato2040046
Ann-Kristin Schmaelter, J. Waidhauser, Dina Kaiser, Tatjana Lenskaja, Stefanie Gruetzner, R. Claus, M. Trepel, C. Schmid, A. Rank
{"title":"Alterations of Peripheral Blood T Cell Subsets following Donor Lymphocyte Infusion in Patients after Allogeneic Stem Cell Transplantation","authors":"Ann-Kristin Schmaelter, J. Waidhauser, Dina Kaiser, Tatjana Lenskaja, Stefanie Gruetzner, R. Claus, M. Trepel, C. Schmid, A. Rank","doi":"10.3390/hemato2040046","DOIUrl":"https://doi.org/10.3390/hemato2040046","url":null,"abstract":"Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) is an established method to enhance the Graft-versus-Leukemia (GvL) effect. However, alterations of cellular subsets in the peripheral blood of DLI recipients have not been studied. We investigated the changes in lymphocyte subpopulations in 16 patients receiving DLI after successful alloSCT. Up to three DLIs were applied in escalating doses, prophylactically for relapse prevention in high-risk disease (n = 5), preemptively for mixed chimerism and/or a molecular relapse/persistence (n = 8), or as part of treatment for hematological relapse (n = 3). We used immunophenotyping to measure the absolute numbers of CD4+, CD8+, NK, and CD56+ T cells and their respective subsets in patients’ peripheral blood one day before DLI (d-1) and compared the results at day + 1 and + 7 post DLI to the values before DLI. After the administration of 1 × 106 CD3+ cells/kg body weight, we observed an overall increase in the CD8+ and CD56+ T cell counts. We determined significant changes between day − 1 compared to day + 1 and day + 7 in memory and activated CD8+ subsets and CD56+ T cells. Applying a higher dose of DLI (5 × 106 CD3+ cells/kg) led to a significant increase in the overall counts and subsets of CD8+, CD4+, and NK cells. In conclusion, serial immune phenotyping in the peripheral blood of DLI recipients revealed significant changes in immune effector cells, in particular for various CD8+ T cell subtypes, indicating proliferation and differentiation.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46360490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-11-18DOI: 10.3390/hemato2040045
M. Minnema, R. Oostvogels, R. Raymakers, M. Jak
{"title":"Differences and Similarities in Treatment Paradigms and Goals Between AL Amyloidosis and Multiple Myeloma","authors":"M. Minnema, R. Oostvogels, R. Raymakers, M. Jak","doi":"10.3390/hemato2040045","DOIUrl":"https://doi.org/10.3390/hemato2040045","url":null,"abstract":"Although there are similarities in the treatment paradigms between AL amyloidosis and multiple myeloma, there are also fundamental differences. A similarity is of course the use of anti-plasma cell drugs in both diseases; however, the most serious mistake a hemato-oncologist can make is to use the same treatment schedule in dosing and frequency in AL amyloidosis patients as in multiple myeloma patients. AL amyloidosis patients with >10% bone marrow plasma cell infiltration in particular are at risk of receiving a more intensive treatment than they can tolerate. This difference in dosing and frequency is true for many anti-clonal drugs, but it is most apparent in the use of high-dose melphalan and autologous stem cell transplantation. While in multiple myeloma in the age group of ≤70 years, more than 80% of patients are fit enough to receive this intensive treatment, this is the case in less than 20% of AL amyloidosis patients. A similarity is the alignment in the goal of treatment. Although in AL amyloidosis has long been recognized that the goal should be complete hematological remission, this has become more apparent in multiple myeloma in recent years. A common goal in the coming years will be to evaluate the role of minimal residual disease to improve survival in both diseases.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41636760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-11-12DOI: 10.3390/hemato2040044
J. Hillengass, M. Merz, R. Alberico, M. Chalian
{"title":"Diffusion-Weighted MRI—The Way Forward for MRI in Myeloma?","authors":"J. Hillengass, M. Merz, R. Alberico, M. Chalian","doi":"10.3390/hemato2040044","DOIUrl":"https://doi.org/10.3390/hemato2040044","url":null,"abstract":"Multiple myeloma and other plasma cell disorders infiltrate the bone marrow in different patterns. While some patients show a homogeneous distribution of the clonal plasma cells others present with focal accumulations, commonly called focal lesions. Novel imaging techniques can provide information on these infiltration patterns and, due to their low invasiveness, can be performed repeatedly and therefore be used for monitoring. Conventional magnetic resonance imaging (MRI) has a high sensitivity for bone marrow assessment but cannot safely differentiate between active and inactive lesions. Therefore, positron emission tomography, especially combined with computed tomography (PET/CT), has been more widely used, at least for the monitoring of treatment response. Comparative, but mostly retrospective studies, have shown that functional MRI techniques, namely diffusion-weighted imaging (DWI), which assesses the movement of water molecules, can evaluate tissue cellularity with high sensitivity, which challenges the dominance of PET/CT in treatment response assessment. This review will discuss the benefits and challenges of DWI and compare it to other available imaging techniques used in patients with monoclonal plasma cell disorders.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47409001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HematoPub Date : 2021-10-21DOI: 10.3390/hemato2040043
Juan Luis Reguera-Ortega, Estefanía García‐Guerrero, J. Pérez-Simón
{"title":"Current Status of CAR-T Cell Therapy in Multiple Myeloma","authors":"Juan Luis Reguera-Ortega, Estefanía García‐Guerrero, J. Pérez-Simón","doi":"10.3390/hemato2040043","DOIUrl":"https://doi.org/10.3390/hemato2040043","url":null,"abstract":"Current data on CAR-T cell-based therapy is really promising in multiple myeloma, especially in terms of response. In heavily pretreated patients, who have already received proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies, current trials report an overall response rate ranging from 81 to 97% and 45 to 67% of complete remission rates. Data are less encouraging in terms of duration of response, although most recent trials have shown significant improvements in terms of event-free survival, with medians ranging from 8 to 14 months and up to 77% progression-free survival at 12 months with an acceptable toxicity profile. These data will be consolidated in future years and will provide new evidence on the best timing for CAR-T cell therapy. Moreover, new CAR-T designs are underway and will challenge the current results.","PeriodicalId":93705,"journal":{"name":"Hemato","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41637012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}