Bulletin of Mathematical Sciences最新文献

筛选
英文 中文
Weighted Sobolev spaces: Markov-type inequalities and duality 加权Sobolev空间:markov型不等式和对偶性
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-08-01 DOI: 10.1007/S13373-017-0104-Y
F. Marcellán, Yamilet Quintana, José M. Rodríguez
{"title":"Weighted Sobolev spaces: Markov-type inequalities and duality","authors":"F. Marcellán, Yamilet Quintana, José M. Rodríguez","doi":"10.1007/S13373-017-0104-Y","DOIUrl":"https://doi.org/10.1007/S13373-017-0104-Y","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86647577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Positive solutions for nonlinear parametric singular Dirichlet problems 非线性参数奇异狄利克雷问题的正解
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-07-20 DOI: 10.1142/S1664360719500115
N. Papageorgiou, V. Rǎdulescu, Dušan D. Repovš
{"title":"Positive solutions for nonlinear parametric singular Dirichlet problems","authors":"N. Papageorgiou, V. Rǎdulescu, Dušan D. Repovš","doi":"10.1142/S1664360719500115","DOIUrl":"https://doi.org/10.1142/S1664360719500115","url":null,"abstract":"We consider a nonlinear parametric Dirichlet problem driven by the p-Laplace differential operator and a reaction which has the competing effects of a parametric singular term and of a Carathéodory perturbation which is ($$p-1$$p-1)-linear near $$+infty $$+∞. The problem is uniformly nonresonant with respect to the principal eigenvalue of $$(-Delta _p,W^{1,p}_0(Omega ))$$(-Δp,W01,p(Ω)). We look for positive solutions and prove a bifurcation-type theorem describing in an exact way the dependence of the set of positive solutions on the parameter $$lambda >0$$λ>0.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82427083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
On the size of Diophantine m-tuples in imaginary quadratic number rings 虚二次数环中丢番图m元组的大小
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-07-05 DOI: 10.1142/S1664360719500206
Nikola Advzaga
{"title":"On the size of Diophantine m-tuples in imaginary quadratic number rings","authors":"Nikola Advzaga","doi":"10.1142/S1664360719500206","DOIUrl":"https://doi.org/10.1142/S1664360719500206","url":null,"abstract":"A Diophantine [Formula: see text]-tuple is a set of [Formula: see text] distinct integers such that the product of any two distinct elements plus one is a perfect square. It was recently proven that there is no Diophantine quintuple in positive integers. We study the same problem in the rings of integers of imaginary quadratic fields. By using a gap principle proven by Diophantine approximations, we show that [Formula: see text]. Our proof is relatively simple compared to the proofs of similar results in positive integers.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86214081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
A nonlinear inverse problem of the Korteweg-de Vries equation Korteweg-de Vries方程的非线性反问题
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-05-18 DOI: 10.1007/S13373-018-0125-1
Sheng-Sen Lu, Miaochao Chen, Qilin Liu
{"title":"A nonlinear inverse problem of the Korteweg-de Vries equation","authors":"Sheng-Sen Lu, Miaochao Chen, Qilin Liu","doi":"10.1007/S13373-018-0125-1","DOIUrl":"https://doi.org/10.1007/S13373-018-0125-1","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79238217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Diophantine problems in solvable groups 可解群中的丢番图问题
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-05-10 DOI: 10.1142/s1664360720500058
A. Garreta, A. Miasnikov, D. Ovchinnikov
{"title":"Diophantine problems in solvable groups","authors":"A. Garreta, A. Miasnikov, D. Ovchinnikov","doi":"10.1142/s1664360720500058","DOIUrl":"https://doi.org/10.1142/s1664360720500058","url":null,"abstract":"We study the Diophantine problem (decidability of finite systems of equations) in different classes of finitely generated solvable groups (nilpotent, polycyclic, metabelian, free solvable, etc.), which satisfy some natural “non-commutativity” conditions. For each group [Formula: see text] in one of these classes, we prove that there exists a ring of algebraic integers [Formula: see text] that is interpretable in [Formula: see text] by finite systems of equations ([Formula: see text]-interpretable), and hence that the Diophantine problem in [Formula: see text] is polynomial time reducible to the Diophantine problem in [Formula: see text]. One of the major open conjectures in number theory states that the Diophantine problem in any such [Formula: see text] is undecidable. If true this would imply that the Diophantine problem in any such [Formula: see text] is also undecidable. Furthermore, we show that for many particular groups [Formula: see text] as above, the ring [Formula: see text] is isomorphic to the ring of integers [Formula: see text], so the Diophantine problem in [Formula: see text] is, indeed, undecidable. This holds, in particular, for free nilpotent or free solvable non-abelian groups, as well as for non-abelian generalized Heisenberg groups and uni-triangular groups [Formula: see text]. Then, we apply these results to non-solvable groups that contain non-virtually abelian maximal finitely generated nilpotent subgroups. For instance, we show that the Diophantine problem is undecidable in the groups [Formula: see text].","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91236763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations Yang-Baxter方程的Belavin-Drinfeld解:伽罗瓦上同调的考虑
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-04-01 DOI: 10.1007/S13373-016-0094-1
A. Pianzola, A. Stolin
{"title":"Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations","authors":"A. Pianzola, A. Stolin","doi":"10.1007/S13373-016-0094-1","DOIUrl":"https://doi.org/10.1007/S13373-016-0094-1","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90824966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field 用速度场的一个方向导数改进了Navier-Stokes方程的正则性判据
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-04-01 DOI: 10.1007/S13373-016-0098-X
Zujin Zhang
{"title":"An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field","authors":"Zujin Zhang","doi":"10.1007/S13373-016-0098-X","DOIUrl":"https://doi.org/10.1007/S13373-016-0098-X","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83958420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Correction to: The Weyl product on quasi-Banach modulation spaces 修正:拟巴拿赫调制空间上的Weyl积
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-02-22 DOI: 10.1007/S13373-018-0122-4
Yuan-yuan Chen, J. Toft, P. Wahlberg
{"title":"Correction to: The Weyl product on quasi-Banach modulation spaces","authors":"Yuan-yuan Chen, J. Toft, P. Wahlberg","doi":"10.1007/S13373-018-0122-4","DOIUrl":"https://doi.org/10.1007/S13373-018-0122-4","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82488526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tosio Kato’s work on non-relativistic quantum mechanics: part 2 加藤俊雄在非相对论量子力学方面的工作:第二部分
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-02-22 DOI: 10.1007/S13373-018-0121-5
B. Simon
{"title":"Tosio Kato’s work on non-relativistic quantum mechanics: part 2","authors":"B. Simon","doi":"10.1007/S13373-018-0121-5","DOIUrl":"https://doi.org/10.1007/S13373-018-0121-5","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86583908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
How to glue derived categories 如何粘合派生类别
IF 1.2 2区 数学
Bulletin of Mathematical Sciences Pub Date : 2018-02-07 DOI: 10.1007/S13373-018-0119-Z
D. Kaledin
{"title":"How to glue derived categories","authors":"D. Kaledin","doi":"10.1007/S13373-018-0119-Z","DOIUrl":"https://doi.org/10.1007/S13373-018-0119-Z","url":null,"abstract":"","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72677432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信