{"title":"粗糙空间与K -代数的可调和性。","authors":"Pere Ara, Kang Li, Fernando Lledó, Jianchao Wu","doi":"10.1007/s13373-017-0109-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we analyze the notions of amenability and paradoxical decomposition from an algebraic perspective. We consider this dichotomy for locally finite extended metric spaces and for general algebras over fields. In the context of algebras we also study the relation of amenability with proper infiniteness. We apply our general analysis to two important classes of algebras: the unital Leavitt path algebras and the translation algebras on locally finite extended metric spaces. In particular, we show that the amenability of a metric space is equivalent to the algebraic amenability of the corresponding translation algebra.</p>","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"8 2","pages":"257-306"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13373-017-0109-6","citationCount":"9","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Amenability of coarse spaces and <ns0:math><ns0:mi>K</ns0:mi></ns0:math> -algebras.\",\"authors\":\"Pere Ara, Kang Li, Fernando Lledó, Jianchao Wu\",\"doi\":\"10.1007/s13373-017-0109-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article we analyze the notions of amenability and paradoxical decomposition from an algebraic perspective. We consider this dichotomy for locally finite extended metric spaces and for general algebras over fields. In the context of algebras we also study the relation of amenability with proper infiniteness. We apply our general analysis to two important classes of algebras: the unital Leavitt path algebras and the translation algebras on locally finite extended metric spaces. In particular, we show that the amenability of a metric space is equivalent to the algebraic amenability of the corresponding translation algebra.</p>\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"8 2\",\"pages\":\"257-306\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13373-017-0109-6\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13373-017-0109-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13373-017-0109-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article we analyze the notions of amenability and paradoxical decomposition from an algebraic perspective. We consider this dichotomy for locally finite extended metric spaces and for general algebras over fields. In the context of algebras we also study the relation of amenability with proper infiniteness. We apply our general analysis to two important classes of algebras: the unital Leavitt path algebras and the translation algebras on locally finite extended metric spaces. In particular, we show that the amenability of a metric space is equivalent to the algebraic amenability of the corresponding translation algebra.
期刊介绍:
The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited.
The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.