{"title":"Analysis of Human Endogenous Retrovirus Expression in Multiple Sclerosis Plaques.","authors":"P J Bhetariya, J D Kriesel, K F Fischer","doi":"10.16966/2473-1846.133","DOIUrl":"10.16966/2473-1846.133","url":null,"abstract":"<p><strong>Background: </strong>It has been suggested that Human endogenous retroviruses (HERVs) are associated with multiple sclerosis (MS) pathogenesis. The objective of this study was to broadly evaluate the expression of HERV core (GAG) and envelope (ENV) genes in diseased brain white matter samples from MS patients compared to normal controls.</p><p><strong>Methods: </strong>Twenty-eight HERV GAG and 88 ENV gene sequences were retrieved, classified by phylogeny, and grouped into clades. Consensus qPCR primers were designed for each clade, and quantitative PCR was performed on 33 MS and 9 normal control frozen brain samples. MS samples included chronic progressive (n=5), primary progressive (n=4), secondary progressive (n=14), relapsing remitting (n=3) and unclassified confirmed MS cases (n=7). The levels of GAG and ENV RNA within each of the samples were quantitated and normalized using the neuronal reference gene RPL19. Expression differences were analyzed for MS <i>vs</i> control.</p><p><strong>Results: </strong>Expression of GAG clades 1A, 3B, and 3C mapping to HERV-E and HERV-K were significantly increased compared to controls, while GAG clade 3A expression was decreased. Expression of HERV ENV clades 2, 3A, 3B, mapping to RTVL, HERV-E and HERV-K and MSRV (HERV-W), were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold.</p><p><strong>Conclusion: </strong>Expression of GAG and ENV mapping to HERV-E, RTVL and HERV-K10 families were significantly increased in the MS group. However, the relative expression differences between the MS and control groups were small, differing less than 1.5-fold. These results indicate that the expression of HERV GAG and ENV regions do not differ greatly between MS and controls in these frozen brain samples.</p>","PeriodicalId":92072,"journal":{"name":"Journal of emerging diseases and virology","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35469411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding Primate Herpesviruses.","authors":"R Eberle, L Jones-Engel","doi":"10.16966/2473-1846.127","DOIUrl":"https://doi.org/10.16966/2473-1846.127","url":null,"abstract":"<p><p>Viruses related to the herpes simplex viruses of humans are present in all nonhuman primate (NHP) species tested and cross species transmission has been documented. The herpesvirus present in macaques, Herpes B virus (BV) rarely causes disease in its natural macaque host. However, when transmitted to a nonnative host, BV has occasionally caused severe and even fatal disease if not treated immediately. Here we present a comprehensive review of the taxonomy, molecular biology, physiology, epidemiology, diagnosis and treatment of BV. We also summarizes what is known about related herpesviruses of other NHP species and the zoonotic potential of these viruses.</p>","PeriodicalId":92072,"journal":{"name":"Journal of emerging diseases and virology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8a/74/nihms936564.PMC5878061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35969345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Perfect Storm Review: Immune Dysregulation in Severe COVID-19 and the Possible Role of Mast Cell-Vitamin D Interactions","authors":"A. Houldsworth","doi":"10.16966/2473-1846.161","DOIUrl":"https://doi.org/10.16966/2473-1846.161","url":null,"abstract":"COVID-19 is caused by a Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and has two spike subunits on the envelope of SARS-CoV-2, S1 and S2, where S1 binds to the Angiotensin Converting Enzyme (ACE-2), a receptor on the host cells and S2 binds to the cell surface membrane. Different immune responses to the virus are apparent, from asymptomatic to severe respiratory distress, organ failure and ultimately death. Immune responses without hyper-inflammation are essential to successful viral resolution. Pathological and environmental factors drive the immunological repertoire, in response to the virus, influencing innate immune cell activation, cytokine-balance and T cell differentiation. This is determined by age, comorbidity, Vitamin D status and ethnicity related factors. Homeostasis of the immune system plays an important role in the development of COVID-19 pneumonia. Mast cell activation and release of histamine is important to the cytokine driven T-cell differentiation as the adaptive response. This review combines the relative effects of UV-index-related Vitamin-D synthesis with immune status. Innate immune responses, T cell differentiation and renin/angiotensin system are different in patients affected by COVID-19 and their different outcomes are explored.","PeriodicalId":92072,"journal":{"name":"Journal of emerging diseases and virology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67393617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}