Biology DirectPub Date : 2024-08-07DOI: 10.1186/s13062-024-00510-0
Maria Pia Polito, Alessio Romaldini, Serena Rinaldo, Elena Enzo
{"title":"Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation.","authors":"Maria Pia Polito, Alessio Romaldini, Serena Rinaldo, Elena Enzo","doi":"10.1186/s13062-024-00510-0","DOIUrl":"10.1186/s13062-024-00510-0","url":null,"abstract":"<p><p>Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"63"},"PeriodicalIF":5.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuregulin-4 protects cardiomyocytes against high-glucose-induced ferroptosis via the AMPK/NRF2 signalling pathway.","authors":"Pengfei Wang, Xiaohua Guo, Hongchao Wang, Lijie Wang, Meifang Ma, Bingyan Guo","doi":"10.1186/s13062-024-00505-x","DOIUrl":"10.1186/s13062-024-00505-x","url":null,"abstract":"<p><strong>Background: </strong>High glucose levels are key factors and key contributors to several cardiovascular diseases associated with cardiomyocyte injury. Ferroptosis, which was identified in recent years, is a mode of cell death caused by the iron-mediated accumulation of lipid peroxides. Neuregulin-4 (Nrg4) is an adipokine that has protective effects against metabolic disorders and insulin resistance. Our previous study revealed that Nrg4 has a protective effect against diabetic myocardial injury, and the aim of this study was to investigate whether Nrg4 could attenuate the occurrence of high glucose-induced ferroptosis in cardiomyocytes.</p><p><strong>Methods: </strong>We constructed an in vivo diabetic myocardial injury model in which primary cardiomyocytes were cultured in vitro and treated with Nrg4. Changes in ferroptosis-related protein levels and ferroptosis-related indices in cardiomyocytes were observed. In addition, we performed back-validation and explored signalling pathways that regulate ferroptosis in primary cardiomyocytes.</p><p><strong>Results: </strong>Nrg4 attenuated cardiomyocyte ferroptosis both in vivo and in vitro. Additionally, the AMPK/NRF2 signalling pathway was activated during this process, and when the AMPK/NRF2 pathway was inhibited, the beneficial effects of Nrg4 were attenuated.</p><p><strong>Conclusion: </strong>Nrg4 antagonizes high glucose-induced ferroptosis in cardiomyocytes via the AMPK/NRF2 signalling pathway.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"62"},"PeriodicalIF":5.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphodiesterase type 5 inhibitor tadalafil reduces prostatic fibrosis via MiR-3126-3p/FGF9 axis in benign prostatic hyperplasia.","authors":"Tiewen Li, Yu Zhang, Zeng Zhou, Lvxin Guan, Yichen Zhang, Zhiyuan Zhou, Wenhao Wang, Xuehao Zhou, Di Cui, Chenyi Jiang, Yuan Ruan","doi":"10.1186/s13062-024-00504-y","DOIUrl":"10.1186/s13062-024-00504-y","url":null,"abstract":"<p><p>Myofibroblast buildup and prostatic fibrosis play a crucial role in the development of benign prostatic hyperplasia (BPH). Treatments specifically targeting myofibroblasts could be a promising approach for treating BPH. Tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor, holds the potential to intervene in this biological process. This study employs prostatic stromal fibroblasts to induce myofibroblast differentiation through TGFβ1 stimulation. As a result, tadalafil significantly inhibited prostatic stromal fibroblast proliferation and fibrosis process, compared to the control group. Furthermore, our transcriptome sequencing results revealed that tadalafil inhibited FGF9 secretion and simultaneously improved miR-3126-3p expression via TGFβ1 suppression. Overall, TGFβ1 can trigger pro-fibrotic signaling through miR-3126-3p in the prostatic stroma, and the use of tadalafil can inhibit this process.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"61"},"PeriodicalIF":5.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-08-02DOI: 10.1186/s13062-024-00507-9
Joanna Kozłowska-Masłoń, Joanna Ciomborowska-Basheer, Magdalena Regina Kubiak, Izabela Makałowska
{"title":"Evolution of retrocopies in the context of HUSH silencing.","authors":"Joanna Kozłowska-Masłoń, Joanna Ciomborowska-Basheer, Magdalena Regina Kubiak, Izabela Makałowska","doi":"10.1186/s13062-024-00507-9","DOIUrl":"10.1186/s13062-024-00507-9","url":null,"abstract":"<p><p>Retrotransposition is one of the main factors responsible for gene duplication and thus genome evolution. However, the sequences that undergo this process are not only an excellent source of biological diversity, but in certain cases also pose a threat to the integrity of the DNA. One of the mechanisms that protects against the incorporation of mobile elements is the HUSH complex, which is responsible for silencing long, intronless, transcriptionally active transposed sequences that are rich in adenine on the sense strand. In this study, broad sets of human and porcine retrocopies were analysed with respect to the above factors, taking into account evolution of these molecules. Analysis of expression pattern, genomic structure, transcript length, and nucleotide substitution frequency showed the strong relationship between the expression level and exon length as well as the protective nature of introns. The results of the studies also showed that there is no direct correlation between the expression level and adenine content. However, protein-coding retrocopies, which have a lower adenine content, have a significantly higher expression level than the adenine-rich non-coding but expressed retrocopies. Therefore, although the mechanism of HUSH silencing may be an important part of the regulation of retrocopy expression, it is one component of a more complex molecular network that remains to be elucidated.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"60"},"PeriodicalIF":5.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-30DOI: 10.1186/s13062-024-00506-w
Xiaofang Liu, Yang Chen, Ying Li, Jinling Bai, Zhi Zeng, Min Wang, Yaodong Dong, Yingying Zhou
{"title":"STAU1-mediated CNBP mRNA degradation by LINC00665 alters stem cell characteristics in ovarian cancer.","authors":"Xiaofang Liu, Yang Chen, Ying Li, Jinling Bai, Zhi Zeng, Min Wang, Yaodong Dong, Yingying Zhou","doi":"10.1186/s13062-024-00506-w","DOIUrl":"10.1186/s13062-024-00506-w","url":null,"abstract":"<p><strong>Background: </strong>To investigate the role of lncRNA LINC00665 in modulating ovarian cancer stemness and its influence on treatment resistance and cancer development.</p><p><strong>Methods: </strong>We isolated ovarian cancer stem cells (OCSCs) from the COC1 cell line using a combination of chemotherapeutic agents and growth factors, and verified their stemness through western blotting and immunofluorescence for stem cell markers. Employing bioinformatics, we identified lncRNAs associated with ovarian cancer, with a focus on LINC00665 and its interaction with the CNBP mRNA. In situ hybridization, immunohistochemistry, and qPCR were utilized to examine their expression and localization, alongside functional assays to determine the effects of LINC00665 on CNBP.</p><p><strong>Results: </strong>LINC00665 employs its Alu elements to interact with the 3'-UTR of CNBP mRNA, targeting it for degradation. This molecular crosstalk enhances stemness by promoting the STAU1-mediated decay of CNBP mRNA, thereby modulating the Wnt and Notch signaling cascades that are pivotal for maintaining CSC characteristics and driving tumor progression. These mechanistic insights were corroborated by a series of in vitro assays and validated in vivo using tumor xenograft models. Furthermore, we established a positive correlation between elevated CNBP levels and increased disease-free survival in patients with ovarian cancer, underscoring the prognostic value of CNBP in this context.</p><p><strong>Conclusions: </strong>lncRNA LINC00665 enhances stemness in ovarian cancer by mediating the degradation of CNBP mRNA, thereby identifying LINC00665 as a potential therapeutic target to counteract drug resistance and tumor recurrence associated with CSCs.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"59"},"PeriodicalIF":5.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-29DOI: 10.1186/s13062-024-00503-z
Konstantin V Gunbin, Gelina S Kopeina, Boris Zhivotovsky, Alexey V Zamaraev
{"title":"Features of the CD1 gene family in rodents and the uniqueness of the immune system of naked mole-rat.","authors":"Konstantin V Gunbin, Gelina S Kopeina, Boris Zhivotovsky, Alexey V Zamaraev","doi":"10.1186/s13062-024-00503-z","DOIUrl":"10.1186/s13062-024-00503-z","url":null,"abstract":"<p><p>Cluster of Differentiation 1 (CD1) proteins are widely expressed throughout jawed vertebrates and present lipid antigens to specific CD1-restricted T lymphocytes. CD1 molecules play an important role in immune defense with the presence or absence of particular CD1 proteins frequently associated with the functional characteristics of the immune system. Here, we show the evolution of CD1 proteins in the Rodentia family and the diversity among its members. Based on the analysis of CD1 protein-coding regions in rodent genomes and the reconstruction of protein structures, we found that Heterocephalus glaber represents a unique member of the suborder Hystricomorpha with significant changes in protein sequences and structures of the CD1 family. Multiple lines of evidence point to the absence of CD1d and CD1e and probably a dysfunctional CD1b protein in Heterocephalus glaber. In addition, the impact of CD1d loss on the CD1d/Natural killer T (NKT) cell axis in the naked mole-rat and its potential implications for immune system function are discussed in detail.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"58"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-23DOI: 10.1186/s13062-024-00499-6
Yue Liang, Haoyue Zhong, Yi Zhao, XiaoMin Tang, Chunchen Pan, Jingwu Sun, Jiaqiang Sun
{"title":"Epigenetic mechanism of RBM15 in affecting cisplatin resistance in laryngeal carcinoma cells by regulating ferroptosis.","authors":"Yue Liang, Haoyue Zhong, Yi Zhao, XiaoMin Tang, Chunchen Pan, Jingwu Sun, Jiaqiang Sun","doi":"10.1186/s13062-024-00499-6","DOIUrl":"10.1186/s13062-024-00499-6","url":null,"abstract":"<p><p>Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC<sub>50</sub>, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC<sub>50</sub>, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"57"},"PeriodicalIF":5.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-16DOI: 10.1186/s13062-024-00500-2
Nan Jing, Zhenkeke Tao, Xinxing Du, Zhenzhen Wen, Wei-Qiang Gao, Baijun Dong, Yu-Xiang Fang
{"title":"Targeting SOX4/PCK2 signaling suppresses neuroendocrine trans-differentiation of castration-resistant prostate cancer.","authors":"Nan Jing, Zhenkeke Tao, Xinxing Du, Zhenzhen Wen, Wei-Qiang Gao, Baijun Dong, Yu-Xiang Fang","doi":"10.1186/s13062-024-00500-2","DOIUrl":"10.1186/s13062-024-00500-2","url":null,"abstract":"<p><strong>Background: </strong>Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer (PCa), is characterized by loss of AR signaling and resistance to AR-targeted therapy. While it is well reported that second-generation AR blockers induce neuroendocrine (NE) trans-differentiation of castration-resistant prostate cancer (CRPC) to promote the occurrence of NEPC, and pluripotent transcription factors might be potential regulators, the underlying molecular mechanisms remain unclear.</p><p><strong>Methods: </strong>We analyzed the data from public databsets to screen candidate genes and then focused on SOX4, a regulator of NE trans-differentiation. The expression changes of SOX4 and its relationship with tumor progression were validated in clinical tumor tissues. We evaluated malignant characteristics related to NEPC in prostate cancer cell lines with stable overexpression or knockdown of SOX4 in vitro. Tumor xenografts were analyzed after inoculating the relevant cell lines into nude mice. RNA-seq, ATAC-seq, non-targeted metabolomics analysis, as well as molecular and biochemical assays were carried out to determine the mechanism.</p><p><strong>Results: </strong>We screened public datasets and identified that expression of SOX4 was significantly elevated in NEPC. Overexpressing SOX4 in C4-2B cells increased cell proliferation and migration, upregulated the expression of NE marker genes, and inhibited AR expression. Consistently, inhibition of SOX4 expression in DU-145 and PC-3 cells reduced the above malignant phenotypes and repressed the expression of NE marker genes. For the in vivo assay, we found that knockdown of SOX4 inhibited tumor growth of subcutaneous xenografts in castrated nude mice which were concomitantly treated with enzalutamide (ENZ). Mechanically, we identified that one of the key enzymes in gluconeogenesis, PCK2, was a novel target of SOX4. The activation of carbohydrate metabolism reprogramming by SOX4 could promote NE trans-differentiation via the SOX4/PCK2 pathway.</p><p><strong>Conclusions: </strong>Our findings reveal that SOX4 promotes NE trans-differentiation both in vitro and in vivo via directly enhancing PCK2 activity to activate carbohydrate metabolism reprogramming. The SOX4/PCK2 pathway and its downstream changes might be novel targets for blocking NE trans-differentiation.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"56"},"PeriodicalIF":5.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-09DOI: 10.1186/s13062-024-00497-8
Tatyana A Grigoreva, Daria S Novikova, Gerry Melino, Nick A Barlev, Vyacheslav G Tribulovich
{"title":"Ubiquitin recruiting chimera: more than just a PROTAC.","authors":"Tatyana A Grigoreva, Daria S Novikova, Gerry Melino, Nick A Barlev, Vyacheslav G Tribulovich","doi":"10.1186/s13062-024-00497-8","DOIUrl":"10.1186/s13062-024-00497-8","url":null,"abstract":"<p><p>Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"55"},"PeriodicalIF":5.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-07-08DOI: 10.1186/s13062-024-00498-7
Qi Zhou, Min Tian, Yang Cao, Min Tang, Xiaohong Xiang, Lu Guo, Hongbin Lv
{"title":"YTHDC1 aggravates high glucose-induced retinal vascular endothelial cell injury via m6A modification of CDK6.","authors":"Qi Zhou, Min Tian, Yang Cao, Min Tang, Xiaohong Xiang, Lu Guo, Hongbin Lv","doi":"10.1186/s13062-024-00498-7","DOIUrl":"10.1186/s13062-024-00498-7","url":null,"abstract":"<p><strong>Objective: </strong>Retinal vascular endothelial cell (RVECs) injury is a major cause of morbidity and mortality among the patients with diabetes. RVECs dysfunction is the predominant pathological manifestation of vascular complication in diabetic retinopathy. N6-methyladenosine (m6A) serves as the most prevalent modification in eukaryotic mRNAs. However, the role of m6A RNA modification in RVECs dysfunction is still unclear.</p><p><strong>Methods: </strong>RT-qPCR analysis and western blot were conducted to detect the change of m6A RNA modification in diabetic retinopathy. CCK-8 assay, transwell experiment, wound healing assay, tube formation experiment, m6A-IP-qPCR were performed to determine the role of YTHDC1 in RVECs. Retinal trypsin digestion test and H&E staining were used to evaluate histopathological changes.</p><p><strong>Results: </strong>The levels of m6A RNA methylation were significantly up-regulated in HG-induced RVECs, which were caused by increased expression of YTHDC1. YTHDC1 regulated the viability, proliferation, migration and tube formation ability in vitro. YTHDC1 overexpression impaired RVECs function by repressing CDK6 expression, which was mediated by YTHDC1-dependent mRNA decay. Moreover, it showed sh-YTHDC1 inhibited CDK6 nuclear export. Sh-YTHDC1 promotes the mRNA degradation of CDK6 in the nucleus but does not affect the cytoplasmic CDK6 mRNA. In vivo experiments showed that overexpression of CDK6 reversed the protective effect of sh-YTHDC1 on STZ-induced retinal tissue damage.</p><p><strong>Conclusion: </strong>YTHDC1-mediated m6A methylation regulates diabetes-induced RVECs dysfunction. YTHDC1-CDK6 signaling axis could be therapeutically targeted for treating DR.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"54"},"PeriodicalIF":5.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}