{"title":"Disulfidptosis-related subtype and prognostic signature in prostate cancer.","authors":"Zhen Kang, Zheng-Hua Wan, Rui-Cheng Gao, Dong-Ning Chen, Qing-Shui Zheng, Xue-Yi Xue, Ning Xu, Yong Wei","doi":"10.1186/s13062-024-00544-4","DOIUrl":"10.1186/s13062-024-00544-4","url":null,"abstract":"<p><strong>Background: </strong>Disulfidptosis refers to cell death caused by the accumulation and bonding of disulfide in the cytoskeleton protein of SLC7A11-high level cells under glucose deprivation. However, the role of disulfidptosis-related genes (DRGs) in prostate cancer (PCa) classification and regulation of the tumor microenvironment remains unclear.</p><p><strong>Methods: </strong>Firstly, we analyzed the expression and mutation landscape of DRGs in PCa. We observed the expression levels of SLC7A11 in PCa cells through in vitro experiments and assessed the inhibitory effect of the glucose transporter inhibitor BAY-876 on SLC7A11-high cells using CCK-8 assay. Subsequently, we performed unsupervised clustering of the PCa population and analyzed the differentially expressed genes (DEGs) between clusters. Using machine learning techniques to select a minimal gene set and developed disulfidoptosis-related risk signatures for PCa. We analyzed the tumor immune microenvironment and the sensitivity to immunotherapy in different risk groups. Finally, we validated the accuracy of the prognostic signatures genes using single-cell sequencing, qPCR, and western blot.</p><p><strong>Results: </strong>Although SLC7A11 can increase the migration ability of tumor cells, BAY-876 effectively suppressed the viability of prostate cancer cells, particularly those with high SLC7A11 expression. Based on the DRGs, PCa patients were categorized into two clusters (A and B). The risk label, consisting of a minimal gene set derived from DEGs, included four genes. The expression levels of these genes in PCa were initially validated through in vitro experiments, and the accuracy of the risk label was confirmed in an external dataset. Cluster-B exhibited higher expression levels of DRG, representing lower risk, better prognosis, higher immune cell infiltration, and greater sensitivity to immune checkpoint blockade, whereas Cluster A showed the opposite results. These findings suggest that DRGs may serve as targets for PCa classification and treatment. Additionally, we constructed a nomogram that incorporates DRGs and clinical pathological features, providing clinicians with a quantitative method to assess the prognosis of PCa patients.</p><p><strong>Conclusion: </strong>This study analyzed the potential connection between disulfidptosis and PCa, and established a prognostic model related to disulfidptosis, which holds promise as a valuable tool for the management and treatment of PCa patients.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"97"},"PeriodicalIF":5.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-23DOI: 10.1186/s13062-024-00537-3
Rong Li, Xiaohui Cao, Jiaxin Chen, Tingting He, Yan Zhang, Wen Wang, Yaqi Wang, Yifei Wang, Yanyan Qiu, Mengji Xie, Kailin Shi, Yuhua Xu, Siyuan Zhang, Peng Liu
{"title":"Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris.","authors":"Rong Li, Xiaohui Cao, Jiaxin Chen, Tingting He, Yan Zhang, Wen Wang, Yaqi Wang, Yifei Wang, Yanyan Qiu, Mengji Xie, Kailin Shi, Yuhua Xu, Siyuan Zhang, Peng Liu","doi":"10.1186/s13062-024-00537-3","DOIUrl":"10.1186/s13062-024-00537-3","url":null,"abstract":"<p><strong>Background: </strong>Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs.</p><p><strong>Results: </strong>In this study, we purified MreB3, MreB4 and MreB5, and successfully prepared monoclonal antibodies. After S. eriocheiris treated with actin stabilizator Phalloidin and inhibitors A22, we found that Phalloidin and A22 affect the S. eriocheiris morphology by altering MreB expression. We confirmed that the ability of S. eriocheiris to invade E. sinensis was increased after treatment with Phalloidin, including that the morphology of E. sinensis blood lymphocytes was deteriorated, blood lymphocytes viability was decreased, peroxidase activity and cell necrosis were increased. On the contrary, the pathogenicity of S. eriocheiris decreased after treatment with A22.</p><p><strong>Conclusions: </strong>Our findings suggest that the MreB protein in S. eriocheiris plays a crucial role in its morphology and pathogenicity, providing new insights into potential strategies for the prevention and control of S. eriocheiris infections.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"98"},"PeriodicalIF":5.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-23DOI: 10.1186/s13062-024-00515-9
Wei Liu, Ziqing Xiong, Tianmei Fu, Juan Yang, Juan Zou, Yize Wu, Linju Kuang, Qian Wang, Song Li, Aiping Le
{"title":"Regulation of renal ischemia-reperfusion injury and tubular epithelial cell ferroptosis by pparγ m6a methylation: mechanisms and therapeutic implications.","authors":"Wei Liu, Ziqing Xiong, Tianmei Fu, Juan Yang, Juan Zou, Yize Wu, Linju Kuang, Qian Wang, Song Li, Aiping Le","doi":"10.1186/s13062-024-00515-9","DOIUrl":"10.1186/s13062-024-00515-9","url":null,"abstract":"<p><p>This study aimed to elucidate the role and underlying mechanisms of Peroxisome proliferator-activated receptor gamma (PPARγ) and its m6A methylation in renal ischemia-reperfusion (I/R) injury and ferroptosis of tubular epithelial cells (TECs). High-throughput transcriptome sequencing was performed on renal tissue samples from I/R injury models and sham-operated mice, complemented by in vivo and in vitro experiments focusing on the PPARγ activator Rosiglitazone and the manipulation of METTL14 and IGF2BP2 expression. Key evaluations included renal injury assessment, ferroptosis indicator measurement, and m6A methylation analysis of PPARγ. Our findings highlight the critical role of the PPARγ pathway and ferroptosis in renal I/R injury, with Rosiglitazone ameliorating renal damage and TEC ferroptosis. METTL14-mediated m6A methylation of PPARγ, dependent on IGF2BP2, emerged as a pivotal regulator of PPARγ expression, renal injury, and ferroptosis. This study reveals that PPARγ m6A methylation, orchestrated by METTL14 through an IGF2BP2-dependent mechanism, plays a crucial role in mitigating renal I/R injury and TEC ferroptosis. These insights offer promising avenues for therapeutic strategies targeting acute kidney injury.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"99"},"PeriodicalIF":5.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-22DOI: 10.1186/s13062-024-00546-2
Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao
{"title":"Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens.","authors":"Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao","doi":"10.1186/s13062-024-00546-2","DOIUrl":"https://doi.org/10.1186/s13062-024-00546-2","url":null,"abstract":"<p><strong>Background: </strong>Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action.</p><p><strong>Results: </strong>The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01).</p><p><strong>Conclusions: </strong>KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"96"},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-18DOI: 10.1186/s13062-024-00549-z
Hong Cao, Zidi Wang, Qiwei Guo, Shanshan Qin, Dandan Li
{"title":"MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis.","authors":"Hong Cao, Zidi Wang, Qiwei Guo, Shanshan Qin, Dandan Li","doi":"10.1186/s13062-024-00549-z","DOIUrl":"https://doi.org/10.1186/s13062-024-00549-z","url":null,"abstract":"<p><strong>Background: </strong>MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood.</p><p><strong>Methods: </strong>Loss-of-function studies were performed in vivo and in vitro to reveal the biological function of MIR194-2HG in GC. MicroRNA PCR array, northern blotting, RNA sequencing, chromatin immunoprecipitation, and rescue assays were conducted to uncover the molecular mechanism of MIR194-2HG.</p><p><strong>Results: </strong>In this study, we reported an atypical lncRNA function of MIR194-2HG in GC. MIR194-2HG downregulation was clinically associated with malignant progression and poor prognosis in GC. Functional assays confirmed that MIR194-2HG knockdown significantly promoted GC proliferation and metastasis in vitro and in vivo. Mechanismically, MIR194-2HG was required for the biogenesis of miR-194 and miR-192, which were reported to be tumor-suppressor genes in GC. Moreover, hepatocyte nuclear factor HNF4A directly activated the transcription of MIR194-2HG and its derived miR-194 and miR-192. Meanwhile, BTF3L4 was proved to be a common target gene of miR-192 and miR-194. Rescue assay further confirmed that MIR194-2HG knockdown promotes GC progression through maintaining BTF3L4 overexpression in a miR-194/192-dependent manner.</p><p><strong>Conclusion: </strong>The dysregulated MIR194-2HG/BTF3L4 axis is responsible for GC progression. Targeting HNF4A to inhibit miR-192/194 expression may be a promising strategy for overcoming GC.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"95"},"PeriodicalIF":5.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-16DOI: 10.1186/s13062-024-00512-y
Wei Zhai, Wensheng Yang, Jing Ge, Xuelian Xiao, Kang Wu, Kelin She, Yu Zhou, Yi Kong, Lin Wu, Shiya Luo, Xingxiang Pu
{"title":"ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway.","authors":"Wei Zhai, Wensheng Yang, Jing Ge, Xuelian Xiao, Kang Wu, Kelin She, Yu Zhou, Yi Kong, Lin Wu, Shiya Luo, Xingxiang Pu","doi":"10.1186/s13062-024-00512-y","DOIUrl":"10.1186/s13062-024-00512-y","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear.</p><p><strong>Methods: </strong>ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays.</p><p><strong>Results: </strong>Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway.</p><p><strong>Conclusions: </strong>We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"94"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-16DOI: 10.1186/s13062-024-00523-9
Michela Murdocca, Osvaldo Andrade Santos-Filho, Claudia De Masi, Edivaldo Dos Santos Rodrigues, Claudia Valeria Campos de Souza, Riccardo De Santis, Donatella Amatore, Andrea Latini, Rossella Schipani, Lino di Rienzo Businco, Bruno Brandimarte, Giorgia Grilli, Tien L Huang, Annie S Mayence, Florigio Lista, Andrea Duranti, Federica Sangiuolo, Jean Jacques Vanden Eynde, Giuseppe Novelli
{"title":"Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19.","authors":"Michela Murdocca, Osvaldo Andrade Santos-Filho, Claudia De Masi, Edivaldo Dos Santos Rodrigues, Claudia Valeria Campos de Souza, Riccardo De Santis, Donatella Amatore, Andrea Latini, Rossella Schipani, Lino di Rienzo Businco, Bruno Brandimarte, Giorgia Grilli, Tien L Huang, Annie S Mayence, Florigio Lista, Andrea Duranti, Federica Sangiuolo, Jean Jacques Vanden Eynde, Giuseppe Novelli","doi":"10.1186/s13062-024-00523-9","DOIUrl":"https://doi.org/10.1186/s13062-024-00523-9","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reliably one of the largest pandemics the world has suffered in recent years. In the search for non-biological antivirals, special emphasis was placed on drug repurposing to accelerate the clinical implementation of effective drugs.The life cycle of the virus has been extensively investigated and many human targets have been identified, such as the molecular chaperone GRP78, representing a host auxiliary factor for SARS-CoV-2 entry. Here we report the inhibitor capacity of TL1228, a small molecule discovered through an in silico screening approach, which could interfere with the interaction of SARS-CoV-2 and its target cells, blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. TL1228 showed in vitro the ability to reduce significantly both pseudoviral and authentic viral activity even through the reduction of GRP78/ACE2 transcript levels. Importantly, TL1228 acts in modulating expression levels of innate immunity and as inflammation markers.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"93"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-16DOI: 10.1186/s13062-024-00536-4
Zhengtao Yu, Ying Xia, Jiameng Li, Junwen Jiang, You Li, Youjun Li, Liu Wang
{"title":"METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1.","authors":"Zhengtao Yu, Ying Xia, Jiameng Li, Junwen Jiang, You Li, Youjun Li, Liu Wang","doi":"10.1186/s13062-024-00536-4","DOIUrl":"https://doi.org/10.1186/s13062-024-00536-4","url":null,"abstract":"<p><strong>Background: </strong>Ischemia/reperfusion (I/R) injury is a severe brain disorder with currently limited effective treatments. This study aims to explore the role of N6-methyladenosine (m6A) modification and associated regulatory factors in I/R to identify potential therapeutic targets.</p><p><strong>Methods: </strong>We utilized a middle cerebral artery occlusion (MCAO) rat model and SH-SY5Y cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to assess m6A levels and investigate the impact of METTL3 overexpression on long non-coding RNA (lncRNA) CRNDE expression. The effects of silencing lncRNA CRNDE on the interaction between YTHDC1 and ATG10 mRNA, as well as the stability of ATG10 mRNA, were evaluated. Additionally, apoptosis rates, pro-inflammatory and anti-inflammatory factor levels, ATG10 expression, and autophagic activity were analyzed to determine the effects of METTL3. The reverse effects of YTHDC1 overexpression were also examined.</p><p><strong>Results: </strong>MCAO rats and OGD/R-treated SH-SY5Y cells exhibited reduced m6A levels. METTL3 overexpression significantly inhibited lncRNA CRNDE expression. Silencing lncRNA CRNDE mitigated OGD/R-induced apoptosis and inflammation in SH-SY5Y cells, while enhancing autophagy and stabilizing ATG10 mRNA. METTL3 overexpression decreased cell apoptosis, reduced the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and increased IL-10 secretion. Furthermore, METTL3 overexpression upregulated ATG10 expression and promoted autophagy. Conversely, lncRNA CRNDE overexpression negated these effects.</p><p><strong>Conclusion: </strong>The inhibition of lncRNA CRNDE affects the interaction between YTHDC1 and ATG10 mRNA and stabilizes ATG10 mRNA, mediated by METTL3 overexpression. These findings suggest that targeting lncRNA CRNDE to reduce apoptosis, inhibit inflammation, increase ATG10 expression, and enhance autophagy could offer new therapeutic strategies for I/R injury.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"92"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-13DOI: 10.1186/s13062-024-00540-8
Maria Pia Polito, Alessio Romaldini, Lorenzo Tagliazucchi, Grazia Marini, Federica Radice, Gaia Andrea Gozza, Giulia Bergamini, Maria Paola Costi, Elena Enzo
{"title":"Biochemical characterization of the feedforward loop between CDK1 and FOXM1 in epidermal stem cells.","authors":"Maria Pia Polito, Alessio Romaldini, Lorenzo Tagliazucchi, Grazia Marini, Federica Radice, Gaia Andrea Gozza, Giulia Bergamini, Maria Paola Costi, Elena Enzo","doi":"10.1186/s13062-024-00540-8","DOIUrl":"https://doi.org/10.1186/s13062-024-00540-8","url":null,"abstract":"<p><p>The complex network governing self-renewal in epidermal stem cells (EPSCs) is only partially defined. FOXM1 is one of the main players in this network, but the upstream signals regulating its activity remain to be elucidated. In this study, we identify cyclin-dependent kinase 1 (CDK1) as the principal kinase controlling FOXM1 activity in human primary keratinocytes. Mass spectrometry identified CDK1 as a key hub in a stem cell-associated protein network, showing its upregulation and interaction with essential self renewal-related markers. CDK1 phosphorylates FOXM1 at specific residues, stabilizing the protein and enhancing its nuclear localization and transcriptional activity, promoting self-renewal. Additionally, FOXM1 binds to the CDK1 promoter, inducing its expression.We identify the CDK1-FOXM1 feedforward loop as a critical axis sustaining EPSCs during in vitro cultivation. Understanding the upstream regulators of FOXM1 activity offers new insights into the biochemical mechanisms underlying self-renewal and differentiation in human primary keratinocytes.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"91"},"PeriodicalIF":5.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biology DirectPub Date : 2024-10-11DOI: 10.1186/s13062-024-00542-6
Davide Colaianni, Federico Virga, Annamaria Tisi, Chiara Stefanelli, Germana Zaccagnini, Paola Cusumano, Gabriele Sales, Mihai Bogdan Preda, Fabio Martelli, Daniela Taverna, Massimiliano Mazzone, Cristiano Bertolucci, Rita Maccarone, Cristiano De Pittà
{"title":"miR-210 is essential to retinal homeostasis in fruit flies and mice.","authors":"Davide Colaianni, Federico Virga, Annamaria Tisi, Chiara Stefanelli, Germana Zaccagnini, Paola Cusumano, Gabriele Sales, Mihai Bogdan Preda, Fabio Martelli, Daniela Taverna, Massimiliano Mazzone, Cristiano Bertolucci, Rita Maccarone, Cristiano De Pittà","doi":"10.1186/s13062-024-00542-6","DOIUrl":"10.1186/s13062-024-00542-6","url":null,"abstract":"<p><strong>Background: </strong>miR-210 is one of the most evolutionarily conserved microRNAs. It is known to be involved in several physiological and pathological processes, including response to hypoxia, angiogenesis, cardiovascular diseases and cancer. Recently, new roles of this microRNA are emerging in the context of eye and visual system homeostasis. Recent studies in Drosophila melanogaster unveiled that the absence of miR-210 leads to a progressive retinal degeneration characterized by the accumulation of lipid droplets and disruptions in lipid metabolism. However, the possible conservation of miR-210 knock-out effect in the mammalian retina has yet to be explored.</p><p><strong>Results: </strong>We further investigated lipid anabolism and catabolism in miR-210 knock-out (KO) flies, uncovering significant alterations in gene expression within these pathways. Additionally, we characterized the retinal morphology of flies overexpressing (OE) miR-210, which was not affected by the increased levels of the microRNA. For the first time, we also characterized the retinal morphology of miR-210 KO and OE mice. Similar to flies, miR-210 OE did not affect retinal homeostasis, whereas miR-210 KO mice exhibited photoreceptor degeneration. To explore other potential parallels between miR-210 KO models in flies and mice, we examined lipid metabolism, circadian behaviour, and retinal transcriptome in mice, but found no similarities. Specifically, RNA-seq confirmed the lack of involvement of lipid metabolism in the mice's pathological phenotype, revealing that the differentially expressed genes were predominantly associated with chloride channel activity and extracellular matrix homeostasis. Simultaneously, transcriptome analysis of miR-210 KO fly brains indicated that the observed alterations extend beyond the eye and may be linked to neuronal deficiencies in signal detection and transduction.</p><p><strong>Conclusions: </strong>We provide the first morphological characterization of the retina of miR-210 KO and OE mice, investigating the role of this microRNA in mammalian retinal physiology and exploring potential parallels with phenotypes observed in fly models. Although the lack of similarities in lipid metabolism, circadian behaviour, and retinal transcriptome in mice suggests divergent mechanisms of retinal degeneration between the two species, transcriptome analysis of miR-210 KO fly brains indicates the potential existence of a shared upstream mechanism contributing to retinal degeneration in both flies and mammals.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"90"},"PeriodicalIF":5.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}