Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis最新文献

筛选
英文 中文
Learning Permutation-Invariant Embeddings for Description Logic Concepts 描述逻辑概念的置换不变嵌入学习
Caglar Demir, A. N. Ngomo
{"title":"Learning Permutation-Invariant Embeddings for Description Logic Concepts","authors":"Caglar Demir, A. N. Ngomo","doi":"10.48550/arXiv.2303.01844","DOIUrl":"https://doi.org/10.48550/arXiv.2303.01844","url":null,"abstract":"Concept learning deals with learning description logic concepts from a background knowledge and input examples. The goal is to learn a concept that covers all positive examples, while not covering any negative examples. This non-trivial task is often formulated as a search problem within an infinite quasi-ordered concept space. Although state-of-the-art models have been successfully applied to tackle this problem, their large-scale applications have been severely hindered due to their excessive exploration incurring impractical runtimes. Here, we propose a remedy for this limitation. We reformulate the learning problem as a multi-label classification problem and propose a neural embedding model (NERO) that learns permutation-invariant embeddings for sets of examples tailored towards predicting $F_1$ scores of pre-selected description logic concepts. By ranking such concepts in descending order of predicted scores, a possible goal concept can be detected within few retrieval operations, i.e., no excessive exploration. Importantly, top-ranked concepts can be used to start the search procedure of state-of-the-art symbolic models in multiple advantageous regions of a concept space, rather than starting it in the most general concept $top$. Our experiments on 5 benchmark datasets with 770 learning problems firmly suggest that NERO significantly (p-value<1%) outperforms the state-of-the-art models in terms of $F_1$ score, the number of explored concepts, and the total runtime. We provide an open-source implementation of our approach.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"9 1","pages":"103-115"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84515096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings 局部性和规则语言对知识图嵌入解释的影响
Luis Galárraga
{"title":"Effects of Locality and Rule Language on Explanations for Knowledge Graph Embeddings","authors":"Luis Galárraga","doi":"10.48550/arXiv.2302.06967","DOIUrl":"https://doi.org/10.48550/arXiv.2302.06967","url":null,"abstract":"Knowledge graphs (KGs) are key tools in many AI-related tasks such as reasoning or question answering. This has, in turn, propelled research in link prediction in KGs, the task of predicting missing relationships from the available knowledge. Solutions based on KG embeddings have shown promising results in this matter. On the downside, these approaches are usually unable to explain their predictions. While some works have proposed to compute post-hoc rule explanations for embedding-based link predictors, these efforts have mostly resorted to rules with unbounded atoms, e.g., bornIn(x,y) =>residence(x,y), learned on a global scope, i.e., the entire KG. None of these works has considered the impact of rules with bounded atoms such as nationality(x,England) =>speaks(x, English), or the impact of learning from regions of the KG, i.e., local scopes. We therefore study the effects of these factors on the quality of rule-based explanations for embedding-based link predictors. Our results suggest that more specific rules and local scopes can improve the accuracy of the explanations. Moreover, these rules can provide further insights about the inner-workings of KG embeddings for link prediction.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"415 1","pages":"143-155"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79429056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferable Deep Metric Learning for Clustering 用于聚类的可转移深度度量学习
C. SimoAlami, Rim Kaddah, J. Read
{"title":"Transferable Deep Metric Learning for Clustering","authors":"C. SimoAlami, Rim Kaddah, J. Read","doi":"10.48550/arXiv.2302.06523","DOIUrl":"https://doi.org/10.48550/arXiv.2302.06523","url":null,"abstract":"Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"2 1","pages":"15-28"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82341871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors 修订条件t-SNE:超越近邻
Edith Heiter, Bo Kang, R. Seurinck, Jefrey Lijffijt
{"title":"Revised Conditional t-SNE: Looking Beyond the Nearest Neighbors","authors":"Edith Heiter, Bo Kang, R. Seurinck, Jefrey Lijffijt","doi":"10.1007/978-3-031-30047-9_14","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_14","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"34 1","pages":"169-181"},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88503901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shapley Values with Uncertain Value Functions 具有不确定值函数的Shapley值
R. Heese, Sascha Mücke, Matthias Jakobs, Thore Gerlach, N. Piatkowski
{"title":"Shapley Values with Uncertain Value Functions","authors":"R. Heese, Sascha Mücke, Matthias Jakobs, Thore Gerlach, N. Piatkowski","doi":"10.1007/978-3-031-30047-9_13","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_13","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"176 1","pages":"156-168"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74708045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
APs: A Proxemic Framework for Social Media Interactions Modeling and Analysis ap:社交媒体互动建模与分析的本体框架
Maxime Masson, P. Roose, C. Sallaberry, R. Agerri, M. Bessagnet, A. L. Parc-Lacayrelle
{"title":"APs: A Proxemic Framework for Social Media Interactions Modeling and Analysis","authors":"Maxime Masson, P. Roose, C. Sallaberry, R. Agerri, M. Bessagnet, A. L. Parc-Lacayrelle","doi":"10.1007/978-3-031-30047-9_23","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_23","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"29 1","pages":"287-299"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74052834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering Diverse Top-K Characteristic Lists 发现不同的Top-K特征列表
Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, J. Juarez, M. Leeuwen, M. Campos
{"title":"Discovering Diverse Top-K Characteristic Lists","authors":"Antonio Lopez-Martinez-Carrasco, Hugo Manuel Proença, J. Juarez, M. Leeuwen, M. Campos","doi":"10.1007/978-3-031-30047-9_21","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_21","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"95 1","pages":"262-273"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80878482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROCKAD: Transferring ROCKET to Whole Time Series Anomaly Detection 将火箭转移到全时间序列异常检测
Andreas Theissler, Manuel Wengert, Felix Gerschner
{"title":"ROCKAD: Transferring ROCKET to Whole Time Series Anomaly Detection","authors":"Andreas Theissler, Manuel Wengert, Felix Gerschner","doi":"10.1007/978-3-031-30047-9_33","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_33","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"31 1","pages":"419-432"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81223273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Compositionality in Data Embedding 关于数据嵌入中的组合性
Zhaozhen Xu, Zhijin Guo, N. Cristianini
{"title":"On Compositionality in Data Embedding","authors":"Zhaozhen Xu, Zhijin Guo, N. Cristianini","doi":"10.1007/978-3-031-30047-9_38","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_38","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"108 1","pages":"484-496"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84017422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
User Authentication via Multifaceted Mouse Movements and Outlier Exposure 用户身份验证通过多方面的鼠标移动和异常暴露
J. Matthiesen, Hanne Hastedt, Ulf Brefeld
{"title":"User Authentication via Multifaceted Mouse Movements and Outlier Exposure","authors":"J. Matthiesen, Hanne Hastedt, Ulf Brefeld","doi":"10.1007/978-3-031-30047-9_24","DOIUrl":"https://doi.org/10.1007/978-3-031-30047-9_24","url":null,"abstract":"","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"34 1","pages":"300-313"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78328974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信