Transferable Deep Metric Learning for Clustering

C. SimoAlami, Rim Kaddah, J. Read
{"title":"Transferable Deep Metric Learning for Clustering","authors":"C. SimoAlami, Rim Kaddah, J. Read","doi":"10.48550/arXiv.2302.06523","DOIUrl":null,"url":null,"abstract":"Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.","PeriodicalId":91439,"journal":{"name":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","volume":"2 1","pages":"15-28"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in intelligent data analysis. International Symposium on Intelligent Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.
用于聚类的可转移深度度量学习
在高维空间中聚类是一项困难的任务;在维度的诅咒下,通常的距离度量可能不再适用。事实上,度量的选择是至关重要的,它高度依赖于数据集的特征。然而,一个单一的度量可以用来正确地对不同领域的多个数据集进行聚类。我们建议这样做,为学习可转移度量提供一个框架。我们表明,我们可以在标记数据集上学习度量,然后将其应用于聚类不同的数据集,使用在一般意义上表征所需聚类的嵌入空间。我们在几个不同复杂性的数据集(synthetic, MNIST, SVHN, omniglot)上学习和测试这些指标,并在仅使用少量标记训练数据集和浅层网络的情况下获得与最先进技术相竞争的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信