{"title":"Analysis of CENP-B Boxes as Anchor of Kinetochores in Centromeres of Human Chromosomes.","authors":"Fritz F Parl","doi":"10.1177/11779322241248913","DOIUrl":"https://doi.org/10.1177/11779322241248913","url":null,"abstract":"<p><p>The kinetochore is a multiprotein structure that attaches at one end to DNA in the centromere and at the other end to microtubules in the mitotic spindle. By connecting centromere and spindle, the kinetochore controls the migration of chromosomes during cell division. The exact position where the kinetochore assembles on each centromere was uncertain because large sections of centromeric DNA had not been sequenced due to highly repetitive alpha-satellite arrays. Embedded in the arrays is a 17 bp consensus sequence, the so-called CENP-B box, which binds the CENP-B protein, the only protein that binds directly to centromeric DNA. Recently, the Telomere-to-Telomere Consortium published the complete centromeric DNA sequences of all chromosomes including their epigenetic modifications in the T2T-CHM13 map. I used data from the T2T-CHM13 map to locate the CENP-B boxes in the centromeres as anchor of kinetochores. Most of the CENP-B boxes in centromeric DNA are methylated with the exception of the so-called centromere dip region (CDR), where CENP-B protein dimers bind to adjacent unmethylated CENP-B boxes and interact with CENP-A and CENP-C proteins to assemble the kinetochore. The centromeres of all chromosomes combined have a size of 407 Mb of which the kinetochores account for 5.0 Mb or 1.2%. There is no correlation between centromere and kinetochore size (<i>P</i> = .77). While the number of CENP-B boxes varies 4-fold between chromosomes, their density (number/Kb) varies less than 2-fold with a mean of 2.61 ± 0.33. The narrow range ensures a uniform pull of the spindle on the centromeres. I illustrate the findings in a model of the human kinetochore anchored at unmethylated CENP-B boxes in the CDR and present circos plots of chromosomes to show the location of kinetochores in their respective centromeres.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241248913"},"PeriodicalIF":5.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Novel <i>PTX3</i> Variant g.22645332G>T Is Strongly Related to Awassi and Hamdani Sheep Litter Size.","authors":"Faris S Imran, Tahreer M Al-Thuwaini","doi":"10.1177/11779322241248912","DOIUrl":"https://doi.org/10.1177/11779322241248912","url":null,"abstract":"<p><p>The detection of polymorphisms in genes that control livestock reproduction could be highly beneficial for identifying and enhancing economic traits. One of these genes is pentraxin 3 (<i>PTX3</i>), which affects the reproduction of sheep. Therefore, this study investigated whether the variability of the <i>PTX3</i> gene was related to the litter size of Awassi and Hamdani ewes. A total of 200 ewes (130 Awassi and 70 Hamdani) were used for genomic DNA extraction. Polymerase chain reaction was used to amplify the sequence fragments of exons 1, 2, 3, and 4 from the <i>PTX3</i> gene (Oar_v4.0; Chr 1, NC_056054.1), resulting in products of 254, 312, 302, and 253, respectively. Two genotypes, GG and GT, were identified for 302 bp amplicon. A novel mutation was discovered through sequence analysis in the GT genotype at position g.22645332G>T. The statistical analysis revealed a significant association between single nucleotide polymorphism (SNP g.22645332G>T; Oar_v4.0; Chr 1, NC_056054.1) and litter size. The presence of the SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) genotype in ewes resulted in a significant difference compared to ewes with GG genotypes. The discrepancy became apparent in several aspects, including litter sizes, twinning rates, lambing rates, litter weight at birth, and days to lambing. There were fewer lambs born to ewes with the GG genotype than to ewes with the GT genotype. The variant SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1) has positive effects on the litter size of Awassi and Hamdani sheep. The SNP g.22645332G>T (Oar_v4.0; Chr 1, NC_056054.1 has been associated with an increase in litter size and higher prolificacy in ewes.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241248912"},"PeriodicalIF":5.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Potential Role of Phytochemicals of <i>Juniperus procera</i> in the Treatment of Ovarian Cancer and the Inhibition of Human Topoisomerase II Alpha Activity.","authors":"Ateeq A Al-Zahrani","doi":"10.1177/11779322241248904","DOIUrl":"10.1177/11779322241248904","url":null,"abstract":"<p><p>A variety of active chemicals found in medicinal plants can be used to develop new medications with few adverse effects. In vitro and in silico analyses were used to evaluate the anticancer properties of <i>Juniperus procera</i> fruit and leaf extracts. Here, we show that the methanolic extract from <i>J procera</i> fruit and leaf extracts inhibits 2 human ovarian cancer cell lines, A2780CP and SKOV-3. The leaf extract demonstrated strong cytotoxicity against A2780CP with an IC50 of 1.2 μg/mL, almost matching the IC50 of the anticancer medication doxorubicin (0.9 μg/mL). Higher antioxidant activity was observed in the fruit than leaf extract. The molecular docking results showed that the active component, podocarpusflavone A, was the best-docked chemical with the human topoisomerase II alpha enzyme. According to our knowledge, this is the first in vitro study to show the cytotoxicity of <i>J procera</i> extracts against the 2 previously described human ovarian cancer cell lines. The fact that the podocarpusflavone A molecule may have an inhibitory effect on the human topoisomerase II alpha enzyme was also revealed by this first in silico analysis. Our findings imply that the <i>J procera</i> fruit and leaf methanolic extract has anticancer characteristics that may guide future in vivo studies.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241248904"},"PeriodicalIF":2.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khomaini Hasan, Umi Baroroh, Indri Novia Madhani, Zahra Silmi Muscifa, Mia Tria Novianti, Muhamad Abidin, Muhammad Yusuf, Toto Subroto
{"title":"Enzymatic Performance of <i>Aspergillus oryzae</i> α-Amylase in the Presence of Organic Solvents: Activity, Stability, and Bioinformatic Studies.","authors":"Khomaini Hasan, Umi Baroroh, Indri Novia Madhani, Zahra Silmi Muscifa, Mia Tria Novianti, Muhamad Abidin, Muhammad Yusuf, Toto Subroto","doi":"10.1177/11779322241234767","DOIUrl":"https://doi.org/10.1177/11779322241234767","url":null,"abstract":"<p><p>Enzymatic reactions can be modulated by the incorporation of organic solvents, leading to alterations in enzyme stability, activity, and reaction rates. These solvents create a favorable microenvironment that enables hydrophobic reactions, facilities enzyme-substrate complex formation, and reduces undesirable water-dependent side reactions. However, it is crucial to understand the impact of organic solvents on enzymatic activity, as they can also induce enzyme inactivation. In this study, the enzymatic performance of <i>Aspergillus oryzae</i> α-amylase (Taka-amylase) in various organic solvents both experimentally and computationally was investigated. The results demonstrated that ethanol and ether sustain Taka-amylase activity up to 20% to 25% of the organic solvents, with ether providing twice the stability of ethanol. Molecular dynamics simulations further revealed that Taka-amylase has a more stable structure in ether and ethanol relative to other organic solvents. In addition, the analysis showed that the loop located near the active site in the AB-domain is a vulnerable site for enzyme destabilization when exposed to organic solvents. The ability of Taka-amylase to preserve the secondary loop structure in ether and ethanol contributed to the enzyme's activity. In addition, the solvent accessibility surface area of Taka-amylase is distributed throughout all enzyme structures, thereby contributing to the instability of Taka-amylase in the presence of most organic solvents.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241234767"},"PeriodicalIF":5.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computer-Assisted Discovery of <i>Salvia fruticosa</i> Compounds With Schistosomicidal Activity.","authors":"Ryman Shoko, Farirai Mandivenga","doi":"10.1177/11779322241240651","DOIUrl":"10.1177/11779322241240651","url":null,"abstract":"<p><p>Schistosomiasis, otherwise known as bilharzia or snail fever, is a disease that usually affects poor people and people exposed to poor sanitation. The disease affects over 200 million people worldwide annually. Schistosomiasis has been treated using a single drug, praziquantel, since the 1970s and this is resulting in schistosomes becoming resistant. Therefore, there is an urgent need to develop new antischistosoma drugs and vaccines. This study focuses on identifying potential antischistosomal compounds from the plant <i>Salvia fruticosa</i>. We virtually screened a library of 163 <i>S fruticosa</i> compounds by docking against <i>Schistosoma mansoni</i> sulfotransferase (<i>Sm</i>SULT) using the PyRx software. Docking scores ranged from -4.7 to -9.3 kcal/mol. Compounds with binding affinity of -7.6 or stronger were subjected to drug-likeness assessments using the DataWarrior software. We also employed the PAINS removal tool to filter off false-positive results. Twelve compounds passed the drug-likeness screen, and these were subjected to in silico toxicity predictions to determine their mutagenic, tumorigenic and reproductive potential. Seven compounds were predicted to be nontoxic. After considering the toxicity analysis results and drug scores of the compounds, we identified rosmarinic acid and hispidulin as qualifying for further evaluation as potential drugs against schistosomiasis. Free energy calculations using the fastDRH webserver and molecular dynamics simulations using CABS-flex showed that the receptor-ligand complexes for the 2 lead compounds are stable under physiological conditions. We recommend that rosmarinic acid and hispidulin be used as hit compounds for the development of potential antischistosomal drugs.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241240651"},"PeriodicalIF":5.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effectiveness of Narciclasine in Suppressing the Inflammatory Response in Sepsis: Molecular Docking and In Silico Studies.","authors":"Manoj Kumar Kingsley, Gurugubelli Krishna Rao, Ballambattu Vishnu Bhat","doi":"10.1177/11779322241233436","DOIUrl":"10.1177/11779322241233436","url":null,"abstract":"<p><p>Narciclasine is an alkaloid belonging to the Amaryllidaceae family which has been reported to have many beneficial properties. Especially its anticancer properties have been widely reported. Here, we have focused on its potential use in suppressing the inflammatory response in sepsis using in silico methods. Lipopolysaccharide (LPS) is an endotoxin which is present in the outer membrane of gram-negative bacteria and is a crucial player in the pathogenesis of gram-negative sepsis. Activation of toll-like receptor 4 (TLR4) signaling by LPS is an important event in the pathogenesis of gram-negative sepsis. This initiates a downstream signaling pathway comprising of several adaptor proteins such as toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase (IRAK)-1, IRAK-4, interferon regulatory factor 3 (IRF-3), tumor necrosis factor receptor-associated factor 6 (TRAF-6) leading to nuclear factor kappa B (NF-κβ) activation resulting in elevated production of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. S100 calcium binding proteins A8/A9 (S100A8/A9) have been found to be an agonist of TLR4, and it amplifies the inflammatory response in sepsis. Molecular docking studies of narciclasine with target proteins associated with the LPS-TLR4 pathway showed that it has good binding affinity and stable interactions with the targets studied. Molecular dynamics (MD) simulation studies over 100 ns showed that most of the ligand-target complexes were stable. The structures of all the targets except TRAF-6 were retrieved from the Protein Data Bank (PDB) database. Homology modeling was done to predict the 3-dimensional structure of TRAF-6. MD simulation of narciclasine-TRAF-6 complex showed that the structure is stable. Metapocket was used for active site prediction in the target proteins. Toxicity analysis by admetSAR revealed that narciclasine was readily biodegradable and exhibited minimum toxicity. These results indicate that narciclasine has effective anti-inflammatory properties which could be useful in suppressing the inflammatory response in sepsis.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241233436"},"PeriodicalIF":5.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V Kalidasan, Darshinie Suresh, Nurulisa Zulkifle, Yap Siew Hwei, Leong Kok Hoong, Reena Rajasuriar, Kumitaa Theva Das
{"title":"Investigating D-Amino Acid Oxidase Expression and Interaction Network Analyses in Pathways Associated With Cellular Stress: Implications in the Biology of Aging.","authors":"V Kalidasan, Darshinie Suresh, Nurulisa Zulkifle, Yap Siew Hwei, Leong Kok Hoong, Reena Rajasuriar, Kumitaa Theva Das","doi":"10.1177/11779322241234772","DOIUrl":"10.1177/11779322241234772","url":null,"abstract":"<p><p>D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a by-product. The generation of intracellular H<sub>2</sub>O<sub>2</sub> may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an <i>in silico</i> approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H<sub>2</sub>O<sub>2</sub>. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an <i>in vivo</i> approach.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241234772"},"PeriodicalIF":2.3,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Transcriptomics Data Profiling Reveals E2F Targets as an Important Biological Pathway Overexpressed in Intellectual Disability Disorder.","authors":"Prekshi Garg, Farrukh Jamal, Prachi Srivastava","doi":"10.1177/11779322231224665","DOIUrl":"10.1177/11779322231224665","url":null,"abstract":"<p><p>Intellectual disability (ID) is an early childhood neurodevelopmental disorder that is characterized by impaired intellectual functioning and adaptive behavior. It is one of the major concerns in the field of neurodevelopmental disorders across the globe. Diversified approaches have been put forward to overcome this problem. Among all these approaches, high throughput transcriptomic analysis has taken an important dimension. The identification of genes causing ID rapidly increased over the past 3 to 5 years owing to the use of sophisticated high throughput sequencing platforms. Early monitoring and preventions are much important for such disorder as their progression occurs during fetal development. This study is an attempt to identify differentially expressed genes (DEGs) and upregulated biological processes involved in development of ID patients through comparative analysis of available transcriptomics data. A total of 7 transcriptomic studies were retrieved from National Center for Biotechnology Information (NCBI) and were subjected to quality check and trimming prior to alignment. The normalization and differential expression analysis were carried out using DESeq2 and EdgeR packages of Rstudio to identify DEGs in ID. In progression of the study, functional enrichment analysis of the results obtained from both DESeq2 and EdgeR was done using gene set enrichment analysis (GSEA) tool to identify major upregulated biological processes involved in ID. Our findings concluded that monitoring the level of E2F targets, estrogen, and genes related to oxidative phosphorylation, DNA repair, and glycolysis during the developmental stage of an individual can help in the early detection of ID disorder.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322231224665"},"PeriodicalIF":5.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Studies on 6-Pyruvoyl Tetrahydropterin Synthase (6-PTPS) of <i>Plasmodium falciparum</i>.","authors":"Shalom N Chinedu, Mercy Bella-Omunagbe, Esther Okafor, Rufus Afolabi, Ezekiel Adebiyi","doi":"10.1177/11779322241230214","DOIUrl":"10.1177/11779322241230214","url":null,"abstract":"<p><p>6-Pyruvoyl tetrahydropterin synthase (6-PTPS) is a lyase involved in the synthesis of tetrahydrobiopterin. In <i>Plasmodium</i> species where dihydroneopterin aldolase (DHNA) is absent, it acts in the folate biosynthetic pathway necessary for the growth and survival of the parasite. The 6-pyruvoyl tetrahydropterin synthase of <i>Plasmodium falciparum</i> (<i>Pf</i>PTPS) has been identified as a potential antimalarial drug target. This study identified potential inhibitors of <i>Pf</i>PTPS using molecular docking techniques. Molecular docking and virtual screening of 62 compounds including the control to the deposited Protein Data Bank (PDB) structure was carried out using AutoDock Vina in PyRx. Five of the compounds, <i>N,N</i>-dimethyl-<i>N</i>'-[4-oxo-6-(2,2,5-trimethyl-1,3-dioxolan-4-yl)-3H-pteridin-2-yl]methanimidamide (140296439), 2-amino-6-[(1R)-3-cyclohexyl-1-hydroxypropyl]-3H-pteridin-4-one (140296495), 2-(2,3-dihydroxypropyl)-8,9-dihydro-6H-pyrimido[2,1-b]pteridine-7,11-dione (144380406), 2-(dimethylamino)-6-[(2,2-dimethyl-1,3-dioxolan-4-yl)-hydroxymethyl]-3H-pteridin-4-one (135573878), and [1-acetyloxy-1-(2-methyl-4-oxo-3H-pteridin-6-yl)propan-2-yl] acetate (136075207), showed better binding affinity than the control ligand, biopterin (135449517), and were selected and screened. Three conformers of 140296439 with the binding energy of -7.2, -7.1, and -7.0 kcal/mol along with 140296495 were better than the control at -5.7 kcal/mol. In silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies predicted good pharmacokinetic properties of all the compounds while reporting a high risk of irritant toxicity in 140296439 and 144380406. The study highlights the five compounds, 140296439, 140296495, 144380406, 135573878 and 136075207, as potential inhibitors of PfPTPS and possible compounds for antimalarial drug development.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241230214"},"PeriodicalIF":5.8,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional Enrichment Analysis of Tumor Microenvironment-Driven Molecular Alterations That Facilitate Epithelial-to-Mesenchymal Transition and Distant Metastasis.","authors":"Mahnaz Abdolahi, Parnian Ghaedi Talkhounche, Mohammad Hossein Derakhshan Nazari, Haniyeh Sadat Hosseininia, Niloofar Khoshdel-Rad, Amin Ebrahimi Sadrabadi","doi":"10.1177/11779322241227722","DOIUrl":"10.1177/11779322241227722","url":null,"abstract":"<p><p>Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241227722"},"PeriodicalIF":5.8,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}