Gravitational and space research : publication of the American Society for Gravitational and Space Research最新文献

筛选
英文 中文
Research Flights on Blue Origin's New Shepard 蓝色起源公司新谢泼德号的研究飞行
E. Wagner
{"title":"Research Flights on Blue Origin's New Shepard","authors":"E. Wagner","doi":"10.2478/gsr-2021-0005","DOIUrl":"https://doi.org/10.2478/gsr-2021-0005","url":null,"abstract":"Abstract Blue Origin's New Shepard launch vehicle made its first flight above the Kármán Line, returning safely to Earth in November 2015. At the time when this paper is being written (February 2021), the system has conducted 14 flights, including 10 with research and education payloads aboard. More than 100 payloads have exercised a wide range of capabilities and interfaces, from small cubesat-form factor student payloads to large custom payloads of nearly 100 kg. Investigations have spanned a wide range of high-altitude and microgravity research objectives, as well as raising technology readiness level (TRL) on diverse hardware. This paper summarizes New Shepard's payload missions to date, and presents standardized and custom accommodations, both in the shirtsleeve cabin and directly exposed to the space environment.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86767191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Omni-Gravity Nanophotonic Heating and Leidenfrost-Driven Water Recovery System 全重力纳米光子加热和leidenfrost驱动的水回收系统
Rawand M Rasheed, Evan Thomas, P. Gardner, Tanya Rogers, R. Verduzco, M. Weislogel
{"title":"Omni-Gravity Nanophotonic Heating and Leidenfrost-Driven Water Recovery System","authors":"Rawand M Rasheed, Evan Thomas, P. Gardner, Tanya Rogers, R. Verduzco, M. Weislogel","doi":"10.2478/gsr-2020-0004","DOIUrl":"https://doi.org/10.2478/gsr-2020-0004","url":null,"abstract":"Abstract Recycling systems aboard spacecraft are currently limited to approximately 80% water recovery from urine. To address challenges associated with odors, contamination, and microgravity fluid flow phenomena, current systems use toxic pretreatment chemicals, filters, and rotary separators. Herein, a semipassive and potentially contaminant- and biofouling-free approach to spacecraft urine processing is developed by combining passive liquid–gas separation, nanophotonic pasteurization, and noncontact Leidenfrost droplet distillation. The system aims to achieve >98% water recovery from wastewater streams in zero, Lunar, Martian, and terrestrial gravitational environments. The surfaces of the phase separator are coated with carbon black nanoparticles that are irradiated by infrared light-emitting diodes (LEDs) producing hyperlocal heating and pasteurization during urine collection, separation, and storage. For the prescribed flow rate and timeline, the urine is then introduced into a heated 8.5-m-long helical hemicircular aluminum track. The low pitch and the high temperature of the track combine to establish weakly gravity-driven noncontact Leidenfrost droplet distillation conditions. In our technology demonstrations, salt-free distillate and concentrated brine are successfully recovered from saltwater feed stocks. We estimate equivalent system mass metrics for the approach, which compare favorably to the current water recovery system aboard the International Space Station.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81715824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Novel Protocol Permitting the Use of Frozen Cell Cultures on Low Earth Orbit 允许在近地轨道上使用冷冻细胞培养的新方案
L. Kidder, L. Zea, SM Countryman, L. Stodieck, B. Hammer
{"title":"A Novel Protocol Permitting the Use of Frozen Cell Cultures on Low Earth Orbit","authors":"L. Kidder, L. Zea, SM Countryman, L. Stodieck, B. Hammer","doi":"10.2478/gsr-2020-0003","DOIUrl":"https://doi.org/10.2478/gsr-2020-0003","url":null,"abstract":"Abstract Cell culture on orbit is complicated by numerous operational constraints, including g-loads on the ascent, vibrations, transit time to International Space Station, and delays in experiment initiation. Cryopreserving cells before launch would negate these factors. However, defrosting these cells is problematic, since the traditional method of employing a water bath is not possible. We here describe a unique apparatus designed to accomplish this in a microgravitational environment. This apparatus resulted in rapid defrost of cryopreserved cell cultures and allowed successful tissue culture operations on the station for periods of up to 21 days.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85071822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth and Development of Ecotypes of Arabidopsis thaliana: Preliminary Experiments to Prepare for a Moon Lander Mission 拟南芥生态型的生长发育:为月球着陆器任务做准备的初步实验
Tatsiana Shymanovich, J. Kiss
{"title":"Growth and Development of Ecotypes of Arabidopsis thaliana: Preliminary Experiments to Prepare for a Moon Lander Mission","authors":"Tatsiana Shymanovich, J. Kiss","doi":"10.2478/gsr-2020-0002","DOIUrl":"https://doi.org/10.2478/gsr-2020-0002","url":null,"abstract":"Abstract NASA is planning to launch robotic landers to the Moon as part of the Artemis lunar program. We have proposed sending a greenhouse housed in a 1U CubeSat as part of one of these robotic missions. A major issue with these small landers is the limited power resources that do not allow for a narrow temperature range that we had on previous spaceflight missions with plants. Thus, the goal of this project was to extend this temperature range, allowing for greater flexibility in terms of hardware development for growing plants on the Moon. Our working hypothesis was that a mixture of ecotypes of Arabidopsis thaliana from colder and warmer climates would allow us to have successful growth of seedlings. However, our results did not support this hypothesis as a single genotype, Columbia (Col-0), had the best seed germination, growth, and development at the widest temperature range (11–25 °C). Based on results to date, we plan on using the Columbia ecotype, which will allow engineers greater flexibility in designing a thermal system. We plan to establish the parameters of growing plants in the lunar environment, and this goal is important for using plants in a bioregenerative life support system needed for human exploration on the Moon.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86685680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Detection of Microorganisms with an Electronic Nose for Application under Microgravity Conditions 微重力条件下应用电子鼻检测微生物
U. Reidt, A. Helwig, G. Müller, J. Lenic, J. Grosser, V. Fetter, A. Kornienko, S. Kharin, N. Novikova, T. Hummel
{"title":"Detection of Microorganisms with an Electronic Nose for Application under Microgravity Conditions","authors":"U. Reidt, A. Helwig, G. Müller, J. Lenic, J. Grosser, V. Fetter, A. Kornienko, S. Kharin, N. Novikova, T. Hummel","doi":"10.2478/gsr-2020-0001","DOIUrl":"https://doi.org/10.2478/gsr-2020-0001","url":null,"abstract":"Abstract In this work, we report on the construction, training and functional assessment of an electronic nose (called ‘E-Nose’) that is capable of monitoring the microbial contamination onboard space ships under microgravity conditions. To this end, a commercial electronic nose was modified to allow for the sampling of microbial volatile organic compounds (MVOCs) emitted from relevant bacterial and fungi species. Training of the modified ‘E-Nose’ was performed by establishing an MVOC database consisting of two Gram-positive bacteria strains (Bacillus subtilis and Staphylococcus warneri) and two fungi strains (Aspergillus versicolor and Penicillium expansum). All these strains are known to exist onboard the International Space Station (ISS) and to form important parts of its microbial contamination. All cultures were grown on four kinds of structural materials also in use onboard the ISS. The MVOCs emitted during the different growth phases of these cultures were monitored with an array of ten different metal oxide gas sensors inside the ‘E-Nose’. Principal component analysis of the array data revealed that B. subtilis and S. warneri form separate clusters in an optimized score plot, while the two fungi strains of A. versicolor and P. expansum form a large common cluster, well discriminated against to the bacteria clusters.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74324266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A High-Altitude Balloon Platform for Space Life Sciences Education 空间生命科学教育高空气球平台
J. McKaig, Tristan A. Caro, Alex J. Hyer, E. Talburt, Sonali Verma, Kaixin Cui, Anna-Sophia Boguraev, M. Heit, Aimee Johnson, E. Johnson, Andrew Jong, Brooke Shepard, Jamie Stankiewiz, Nhung Tran, J. Rask
{"title":"A High-Altitude Balloon Platform for Space Life Sciences Education","authors":"J. McKaig, Tristan A. Caro, Alex J. Hyer, E. Talburt, Sonali Verma, Kaixin Cui, Anna-Sophia Boguraev, M. Heit, Aimee Johnson, E. Johnson, Andrew Jong, Brooke Shepard, Jamie Stankiewiz, Nhung Tran, J. Rask","doi":"10.2478/gsr-2019-0007","DOIUrl":"https://doi.org/10.2478/gsr-2019-0007","url":null,"abstract":"Abstract High-altitude balloons (HABs) present a valuable and cost-effective tool for educators and students to access the conditions that are analogous to space and extraterrestrial environments in the Earth’s upper atmosphere. Historically, HABs have been used for meteorological measurements, observation, sampling of aerosols, and exposure of samples to upper atmosphere environments. The Earth’s stratosphere allows researchers access to a unique combination of wideband solar radiation, extreme cold, rarefied air, low humidity, and acute ionizing radiation—conditions that are relevant to space biology research. Here, we describe a reproducible payload for a HAB mission that can be constructed, launched, and retrieved for about $3,000. This general standard operating procedure can be used by educators, community scientists, and research teams working with limited resources.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77945634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigation of Murine T-Cells and Cancer Cells under Thermal Stressors and 2D Slow Rotating System Effects as a Testbed for Suborbital Flights 作为亚轨道飞行试验台的热应激源和二维慢旋转系统效应下小鼠t细胞和癌细胞的研究
P. Llanos, K. Andrijauskaite
{"title":"Investigation of Murine T-Cells and Cancer Cells under Thermal Stressors and 2D Slow Rotating System Effects as a Testbed for Suborbital Flights","authors":"P. Llanos, K. Andrijauskaite","doi":"10.2478/gsr-2019-0006","DOIUrl":"https://doi.org/10.2478/gsr-2019-0006","url":null,"abstract":"Abstract Research indicates that exposure to microgravity leads to immune system dysregulation. However, there is a lack of clear evidence on the specific reasons and precise mechanisms accounting for these immune system changes. Past studies investigating space travel-induced alterations in immunological parameters report many conflicting results, explained by the role of certain confounders, such as cosmic radiation, individual body environment, or differences in experimental design. To minimize the variability in results and to eliminate some technical challenges, we advocate conducting thorough feasibility studies prior to actual suborbital or orbital space experiments. We show how exposure to suborbital flight stressors and the use of a two-dimensional slow rotating device affect T-cells and cancer cells survivability. To enhance T-cell activation and viability, we primed them alone or in combination with IL-2 and IL-12 cytokines. Viability of T-cells was assessed before, during the experiment, and at the end of the experiment for which T-cells were counted every day for the last 4 days to allow the cells to form clear structures and do not disturb their evolution into various geometries. The slow rotating device could be considered a good system to perform T-cell activation studies and develop cell aggregates for various types of cells that react differently to thermal stressors.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90901950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of macromolecular mass transport in microgravity protein crystallization 微重力蛋白质结晶过程中大分子质量传递的影响
Arayik Martirosyan, L. DeLucas, C. Schmidt, M. Perbandt, D. McCombs, M. Cox, C. Radka, C. Betzel
{"title":"Effect of macromolecular mass transport in microgravity protein crystallization","authors":"Arayik Martirosyan, L. DeLucas, C. Schmidt, M. Perbandt, D. McCombs, M. Cox, C. Radka, C. Betzel","doi":"10.2478/gsr-2019-0005","DOIUrl":"https://doi.org/10.2478/gsr-2019-0005","url":null,"abstract":"Abstract To investigate the effect of macromolecular transport and the incorporation of protein aggregate impurities in growing crystals, experiments were performed on the International Space Station (ISS) and compared with control experiments performed in a 1G laboratory environment. Crystal growth experiments for hen egg-white lysozyme (HEWL) and Plasmodium falciparum glutathione S-transferase (PfGST) were monitored using the ISS Light Microscopy Module (LMM). Experiments were performed applying the liquid–liquid counter diffusion crystallization method using rectangular, optically transparent capillaries. To analyze the quantity of impurity incorporated into growing crystals, stable fluorescently labeled protein aggregates were prepared and subsequently added at different percent concentrations to nonlabeled monomeric protein suspensions. For HEWL, a covalent cross-linked HEWL dimer was fluorescently labeled, and for PfGST, a stable tetramer was prepared. Crystallization solutions containing different protein aggregate ratios were prepared. The frozen samples were launched on 19.02.2017 via SpaceX-10 mission and immediately transferred to a -80°C freezer on the ISS. Two series of crystallization experiments were performed on ISS, one during 26.02.2017 to 10.03.2017 and a second during 16.06.2017 to 23.06.2017. A comparison of crystal growth rate and size showed different calculated average growth rates as well as different dimensions for crystals growing in different positions along the capillary. The effect of macromolecular mass transport on crystal growth in microgravity was experimentally calculated. In parallel, the percentage of incorporated fluorescent aggregate into the crystals was monitored utilizing the fluorescent LMM and ground-based fluorescent microscopes.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85081053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Impact of g-Load Shift on Temporal Expression Pattern of Apoptosis-linked Proteins in the Rat Mammary Gland g负荷移位对大鼠乳腺细胞凋亡相关蛋白时间表达模式的影响
Kibrom M. Alula, J. Resau, O. Patel
{"title":"Impact of g-Load Shift on Temporal Expression Pattern of Apoptosis-linked Proteins in the Rat Mammary Gland","authors":"Kibrom M. Alula, J. Resau, O. Patel","doi":"10.2478/gsr-2019-0003","DOIUrl":"https://doi.org/10.2478/gsr-2019-0003","url":null,"abstract":"Abstract Alteration in gravitational load impacts homeorhetic response in rat dams which affects neonatal pup survival. However, the effects of hypergravity (HG) exposure on the abundance of apoptosis-associated proteins in mammary epithelial cells (MECs) have not been characterized. Therefore, we examined whether chronic exposure to HG from midpregnancy alters the abundance of proapoptotic proteins in MECs during the late pregnancy and early lactation. A group of pregnant Sprague Dawley rats were exposed to either HG (2g) or normo-gravity (1g: stationary control [SC]) from days 11 to 20 of gestation (G20). Another set of animals were investigated from day 11 of pregnancy through days 1 and 3 (P1 and P3, respectively) postpartum. Quantitative (pixels [px]/lobule) immunohistochemistry at G20 of Cleaved Caspase-3 (CC-3), Tumor Protein p53 (P53), and vitamin D receptor (VDR) revealed that all the three proteins were increased (p<0.01) in HG rats compared to SC animals. At P1, the HG group had twofold higher (p<0.001) expression of CC-3 relative to the SC group. Approximately, 50% (p<0.001) more VDR was detected in the HG cohorts than SC at P3. These results suggest that a shift in g-load upregulates the expression of key proapoptotic proteins during the pregnancy-to-lactation transition in the rat MECs.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78756284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Musculoskeletal Outcomes from Chronic High-Speed High-Impact Resistive Exercise 慢性高速高冲击阻力运动对肌肉骨骼的影响
L. Chen, E. Selimovic, M. Daunis, T.A. Bayers T, L. J. Vargas, I. O'Brien, C. McEnroe, A. Kozerski, A. Vanhoover, W. Gray, J. Caruso
{"title":"Musculoskeletal Outcomes from Chronic High-Speed High-Impact Resistive Exercise","authors":"L. Chen, E. Selimovic, M. Daunis, T.A. Bayers T, L. J. Vargas, I. O'Brien, C. McEnroe, A. Kozerski, A. Vanhoover, W. Gray, J. Caruso","doi":"10.2478/gsr-2019-0004","DOIUrl":"https://doi.org/10.2478/gsr-2019-0004","url":null,"abstract":"Abstract Subjects (n=13) did 30 workouts with their left leg on an Inertial Exercise Trainer (IET), while their right leg served as an untreated control. Before and after the 30 workouts, they underwent isokinetic strength tests (knee and ankle extensors of both legs) whose peak torque (PT), time to PT (TTPT), and rate of torque development (RTD) values were each analyzed with 2(leg)×2(time)×3(velocity) analysis of variances (ANOVAs), with repeated measures per independent variable. Peak force (PF) and total work (TW) data were measured from each IET workout, and they represent time course strength changes produced by our exercise intervention. PF and TW values for the three IET exercises that comprised each workout were each analyzed with one-way ANOVAs with time as the independent variable. Results included significant ankle and knee extensor PT increases, whereby the left leg achieved higher values at posttesting, but there were no significant TTPT changes and a time effect for ankle extensor RTD. Our data show that PF and TW each had significant increases over time, with the latter exhibiting greater gains over the 30-workout intervention. Our results imply that the IET yields strength gains over time comparable to standard resistive exercise hardware.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74528236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信