Bio-protocolPub Date : 2023-12-05DOI: 10.21769/BioProtoc.4888
Hannah Darroch, Jonathan Astin, Christopher J. Hall
{"title":"Microinjection of β-glucan Into Larval Zebrafish (Danio rerio) for the Assessment of a Trained-Like Immunity Phenotype","authors":"Hannah Darroch, Jonathan Astin, Christopher J. Hall","doi":"10.21769/BioProtoc.4888","DOIUrl":"https://doi.org/10.21769/BioProtoc.4888","url":null,"abstract":"The innate immune system can remember previous inflammatory insults, enabling long-term heightened responsiveness to secondary immune challenges in a process termed “trained immunity.” Trained innate immune cells undergo metabolic and epigenetic remodelling and, upon a secondary challenge, provide enhanced protection with therapeutic potential. Trained immunity has largely been studied in innate immune cells in vitro or following ex vivo re-stimulation where the primary insult is typically injected into a mouse, adult zebrafish, or human. While highly informative, there is an opportunity to investigate trained immunity entirely in vivo within an unperturbed, intact whole organism. The exclusively innate immune response of larval zebrafish offers an attractive system to model trained immunity. Larval zebrafish have a functional innate immune system by 2 days post fertilisation (dpf) and are amenable to high-resolution, high-throughput analysis. This, combined with their optical transparency, conserved antibacterial responses, and availability of transgenic reporter lines, makes them an attractive alternative model to study trained immunity in vivo. We have devised a protocol where β-glucan (one of the most widely used experimental triggers of trained immunity) is systemically delivered into larval zebrafish using microinjection to stimulate a trained-like phenotype. Following stimulation, larvae are assessed for changes in gene expression, which indicate the stimulatory effect of β-glucan. This protocol describes a robust delivery method of one of the gold standard stimulators of trained immunity into a model organism that is highly amenable to several non-invasive downstream analyses. Key features • This protocol outlines the delivery of one of the most common experimental stimulators of trained immunity into larval zebrafish. • The protocol enables the assessment of a trained-like phenotype in vivo. • This protocol can be applied to transgenic or mutant zebrafish lines to investigate cells or genes of interest in response to β-glucan stimulation.","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"117 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138599697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-12-05DOI: 10.21769/BioProtoc.4895
N. Kosem
{"title":"H2 Production from Methyl Viologen–Dependent Hydrogenase Activity Monitored by Gas Chromatography","authors":"N. Kosem","doi":"10.21769/BioProtoc.4895","DOIUrl":"https://doi.org/10.21769/BioProtoc.4895","url":null,"abstract":"Bio-hydrogen production is an eco-friendly alternative to commercial H2 production, taking advantage of natural systems. Microbial hydrogenases play a main role in biological mechanisms, catalyzing proton reduction to molecular hydrogen (H2) formation under ambient conditions. Direct determination is an important approach to screen bacteria with active hydrogenase and accurately quantify the amount of H2 production. Here, we present a detailed protocol for determining hydrogenase activity based on H2 production using methyl viologen (MV2+) as an artificial reductant, directly monitored by gas chromatography. Recombinant Escherichia coli is used as a hydrogenase-enriched model in this study. Even so, this protocol can be applied to determine hydrogenase activity in all biological samples. Key features • This protocol is optimized for a wide variety of biological samples; both purified hydrogenase (in vitro) and intracellular hydrogenase (in vivo) systems. • Direct, quantitative, and accurate method to detect the amount of H2 by gas chromatography with reproducibility. • Requires only 2 h to complete and allows testing various conditions simultaneously. • Kinetic plot of H2 production allows to analyze kinetic parameters and estimate the efficiency of hydrogenase from different organisms.","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"121 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138599504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-12-05DOI: 10.21769/BioProtoc.4890
J. Ngo, J. Williams, I. Lehman, Randy Schekman
{"title":"Biochemical Reconstitution of Ca2+-Dependent Exosome Secretion in Permeabilized Mammalian Cells","authors":"J. Ngo, J. Williams, I. Lehman, Randy Schekman","doi":"10.21769/BioProtoc.4890","DOIUrl":"https://doi.org/10.21769/BioProtoc.4890","url":null,"abstract":"Exosomes are a subpopulation of the heterogenous pool of extracellular vesicles that are secreted to the extracellular space. Exosomes have been purported to play a role in intercellular communication and have demonstrated utility as biomarkers for a variety of diseases. Despite broad interest in exosome biology, the conditions that regulate their secretion are incompletely understood. The goal of this procedure is to biochemically reconstitute exosome secretion in Streptolysin O (SLO)-permeabilized mammalian cells. This protocol describes the reconstitution of lyophilized SLO, preparation of cytosol and SLO-permeabilized cells, assembly of the biochemical reconstitution reaction, and quantification of exosome secretion using a sensitive luminescence-based assay. This biochemical reconstitution reaction can be utilized to characterize the molecular mechanisms by which different gene products regulate exosome secretion. Key features This protocol establishes a functional in vitro system to reconstitute exosome secretion in permeabilized mammalian cells upon addition of cytosol, ATP, GTP, and calcium (Ca2+).","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"86 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-12-05DOI: 10.21769/BioProtoc.4894
Brian Haarer, David Amberg, Jessica Henty-Ridilla
{"title":"Purification of Human Cytoplasmic Actins From Saccharomyces cerevisiae","authors":"Brian Haarer, David Amberg, Jessica Henty-Ridilla","doi":"10.21769/BioProtoc.4894","DOIUrl":"https://doi.org/10.21769/BioProtoc.4894","url":null,"abstract":"Eukaryotic cells rely on actin to support cellular structure, motility, transport, and a wide variety of other cytoplasmic functions and nuclear activities. Humans and other mammals express six closely related isoforms of actin, four of which are found primarily in skeletal, cardiac, and smooth muscle tissues. The final two isoforms, β and γ, are found in non-muscle cells. Due to the ease of purification, many biochemical studies surveying the functions of actin and its regulators have been carried out with protein purified from skeletal muscle. However, it has become increasingly clear that some activities are isoform specific, necessitating more accessible sources of non-muscle actin isoforms. Recent innovations permit the purification of non-muscle actins from human cell culture and heterologous systems, such as insect cell culture and the yeast Pichia pastoris. However, these systems generate mixtures of actin types or require additional steps to remove purification-related tags. We have developed strains of Saccharomyces cerevisiae (budding yeast) that express single untagged isoforms of either human non-muscle actin (β or γ) as their sole actin, allowing the purification of individual homogeneous actin isoforms by conventional purification techniques. Key features • Easy growth of yeast as a source of human cytoplasmic actin isoforms. Uses well-established actin purification methods. • The tag-free system requires no post-purification processing.","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"76 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-10-20DOI: 10.21769/p2290
Elke M. Muntjewerff, V. Josyula, G. Christoffersson
{"title":"Three-dimensional Co-culture Model for Live Imaging of Pancreatic Islets, Immune Cells, and Neurons in Agarose Gel","authors":"Elke M. Muntjewerff, V. Josyula, G. Christoffersson","doi":"10.21769/p2290","DOIUrl":"https://doi.org/10.21769/p2290","url":null,"abstract":"During the onset of autoimmune diabetes, nerve–immune cell interactions seem to play an important role; however, there are currently no models to follow and interfere with these interactions over time in vivo or in vitro. Two-dimensional in vitro models provide insufficient information and microfluidics or organs on a chip are usually challenging to work with. We present here what we believe to be the first simple model that provides the opportunity to co-culture pancreatic islets with sympathetic nerves and immune cells. This model is based on our stamping device that can be 3D printed (STL file provided). Due to the imprint in the agarose gel, sympathetic neurons, pancreatic islets, and macrophages can be seeded in specific locations at a level that allows for confocal live-cell imaging. In this protocol, we provide the instructions to construct and perform live cell imaging experiments in our co-culture model, including: 1) design for the stamping device to make the imprint in the gel, 2) isolation of sympathetic neurons, pancreatic islets, and macrophages, 3) co-culture conditions, 4) how this can be used for live cell imaging, and 5) possibilities for wider use of the model. In summary, we developed an easy-to-use co-culture model that allows manipulation and imaging of interactions between sympathetic nerves, pancreatic islets, and macrophages. This new co-culture model is useful to study nerve–immune cell–islet interactions and will help to identify the functional relevance of neuro-immune interactions in the pancreas. Key features • A novel device that allows for 3D co-culture of sympathetic neurons, pancreatic islets, and immune cells • The device allows the capture of live interactions between mouse sympathetic neurons, pancreatic islets, and immune cells in a controlled environment after six days of co-culturing. • This protocol uses cultured sympathetic neurons isolated from the superior cervical ganglia using a previously established method (Jackson and Tourtellotte, 2014) in a 3D co-culture. • This method requires 3D printing of our own designed gel-stamping device (STL print file provided on SciLifeLab FigShare DOI: 10.17044/scilifelab.24073062).","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139316456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-09-05DOI: 10.21769/BioProtoc.4809
Nalleli Garcia, Alexa N Farmer, Richmond Baptiste, Jessie Fernandez
{"title":"Gene Replacement by a Selectable Marker in the Filamentous Fungus<i>Magnaporthe oryzae</i>.","authors":"Nalleli Garcia, Alexa N Farmer, Richmond Baptiste, Jessie Fernandez","doi":"10.21769/BioProtoc.4809","DOIUrl":"https://doi.org/10.21769/BioProtoc.4809","url":null,"abstract":"<p><p><i>Magnaporthe oryzae</i>is a filamentous fungus responsible for the detrimental rice blast disease afflicting rice crops worldwide. For years, M. oryzae has served as an excellent model organism to study plant pathogen interactions due to its sequenced genome, its amenability to functional genetics, and its capacity to be tracked in laboratory settings. As such, techniques to genetically manipulate M. oryzae for gene deletion range from genome editing via CRISPR-Cas9 to gene replacement through homologous recombination. This protocol focuses on detailing how to perform gene replacement in the model organism, M. oryzae, through a split marker method. This technique relies on replacing the open reading frame of a gene of interest with a gene conferring resistance to a specific selectable chemical, disrupting the transcription of the gene of interest and generating a knockout mutant M. oryzae strain. Key features Comprehensive overview of primer design, PEG-mediated protoplast transformation, and fungal DNA extraction for screening.</p>","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"13 17","pages":"e4809"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3a/bd/BioProtoc-13-17-4809.PMC10501919.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10654908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-09-05DOI: 10.21769/BioProtoc.4795
Cassie Shu Zhu, Jianhua Li, Haichao Wang
{"title":"Use of Open Surface Plasmon Resonance (OpenSPR) to Characterize the Binding Affinity of Protein-Protein Interactions.","authors":"Cassie Shu Zhu, Jianhua Li, Haichao Wang","doi":"10.21769/BioProtoc.4795","DOIUrl":"10.21769/BioProtoc.4795","url":null,"abstract":"<p><p>Surface Plasmon Resonance(SPR) is a label-free optical technique to assess protein-protein interaction kinetics and affinities in a real-time setting. Traditionally, Biacore SPR employs a continuous film of gold to detect any change in the angle of re-emitted light when the refractive index of a ligand conjugated to the flat gold surface is altered by its interaction with a local analyte. In contrast, the Nicoya Lifesciences' OpenSPR technology uses gold nanoparticles to detect small changes in the absorbance peak wavelength of a conjugated ligand after its engagement by an analyte. Specifically, when broadband white light is shone onto the gold nanoparticles, it produces a strong resonance absorbance peak corresponding to the refractive index of a ligand conjugated to the surface of gold nanoparticles. Upon its interaction with an analyte, however, the absorbance wavelength peak of the conjugated ligand will be changed and timely recorded as sensorgrams of dynamic ligand-analyte interactions. Thus, the improvement in the detection method (from traditional detection of changes in the angle of re-emitted light to the contemporary detection of changes in the wavelength of the absorbance peak) features OpenSPR as a cost-effective and user-friendly technique for in-depth characterization of protein-protein interactions. Here, we describe the detailed method that we used to characterize procathepsin L (pCTS-L) interactions with two putative pattern recognition receptors (TLR4 and RAGE) using the 1st generation of Nicoya Lifesciences' OpenSPR instrument with a 1-channel detection. Key features • Nicoya OpenSPR is a benchtop small-size equipment that provides in-depth label-free binding kinetics and affinity measurement for protein-protein interactions in real-time fashion. • This technology is relatively intuitive and user-friendly for scientists at any skill level. • OpenSPR sensors employ nanotechnology to reduce the cost of manufacturing complex optical hardware and Sensor Chips, and similarly reduce the consumption of precious analyte samples. • The manufacturer provides online training for OpenSPR (Catalog: TRAIN-REMOTE) and TraceDrawer (Catalog: TRAIN-TD) to customer scientists.</p>","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"13 17","pages":"e4795"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10359864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-09-05DOI: 10.21769/BioProtoc.4811
Shubhangi Das Barman, Zofija Frimand, Antoine De Morree
{"title":"Absolute Quantification of mRNA Isoforms in Adult Stem Cells Using Microfluidic Digital PCR.","authors":"Shubhangi Das Barman, Zofija Frimand, Antoine De Morree","doi":"10.21769/BioProtoc.4811","DOIUrl":"https://doi.org/10.21769/BioProtoc.4811","url":null,"abstract":"<p><p>Adult stem cells play key roles in homeostasis and tissue repair. These cells are regulated by a tight control of transcriptional programs. For example, muscle stem cells (MuSCs), located beneath the basal lamina, exist in the quiescent state but can transition to an activated, proliferative state upon injury. The control of MuSC state depends on the expression levels of myogenic transcription factors. Recent studies revealed the presence of different mRNA isoforms, with distinct biological regulation. Quantifying the exact expression levels of the mRNA isoforms encoding these myogenic transcription factors is therefore key to understanding how MuSCs switch between cell states. Previously, quantitative real-time polymerase chain reaction (qRT-PCR) has been used to quantify RNA expression levels. However, qRT-PCR depends on large amounts of RNA input and only measures relative abundance. Here, we present a protocol for the absolute quantification of mRNA isoforms using microfluidic digital PCR (mdPCR). Primary MuSCs isolated from individual skeletal muscles (gastrocnemius and masseter) are lysed, and their RNA is reverse-transcribed into cDNA and copied into double-stranded DNA. Following exonuclease I digestion to remove remaining single-stranded DNA, the samples are loaded onto a mdPCR chip with TaqMan probes targeting the mRNA isoforms of interest, whereupon target molecules are amplified in nanoliter chambers. We demonstrate that mdPCR can give exact molecule counts per cell for mRNA isoforms encoding the myogenic transcription factor Pax3. This protocol enables the absolute quantification of low abundant mRNA isoforms in a fast, precise, and reliable way.</p>","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"13 17","pages":"e4811"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/78/0c/BioProtoc-13-17-4811.PMC10501916.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10359860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Optimized Protocol for Detecting Guard Cell-specific Gene Expression by in situ RT-PCR in <i>Brassica rapa</i>.","authors":"Yingying Song, Xinlei Guo, Jian Wu, Jianli Liang, Runmao Lin, Zifu Yan, Xiaowu Wang","doi":"10.21769/BioProtoc.4810","DOIUrl":"https://doi.org/10.21769/BioProtoc.4810","url":null,"abstract":"<p><p>Since the genetic transformation of Chinese cabbage (<i>Brassica rapa</i>) has not been well developed, in situ RT-PCR is a valuable option for detecting guard cell-specific genes. We reported an optimized protocol of in situ RT-PCR by using a FAMA homologous gene Bra001929 in Brassica rapa. FAMA in Arabidopsis has been verified to be especially expressed in guard cells. We designed specific RT-PCR primers and optimized the protocol in terms of the (a) reverse transcription time, (b) blocking time, (c) antigen-antibody incubation time, and (d) washing temperature. Our approach provides a sensitive and effective in situ RT-PCR method that can detect low-abundance transcripts in cells by elevating their levels by RT-PCR in the guard cells in Brassica rapa.</p>","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"13 17","pages":"e4810"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/f0/BioProtoc-13-17-4810.PMC10501917.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10671501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bio-protocolPub Date : 2023-09-05DOI: 10.21769/BioProtoc.4803
Marc Leiro, Raúl Ventura, Nil Rojo-Querol, María Isabel Hernández-Alvarez
{"title":"Endoplasmic Reticulum Isolation: An Optimized Approach into Cells and Mouse Liver Fractionation.","authors":"Marc Leiro, Raúl Ventura, Nil Rojo-Querol, María Isabel Hernández-Alvarez","doi":"10.21769/BioProtoc.4803","DOIUrl":"https://doi.org/10.21769/BioProtoc.4803","url":null,"abstract":"<p><p>The subfractionation of the endoplasmic reticulum (ER) is a widely used technique in cell biology. However, current protocols present limitations such as low yield, the use of large number of dishes, and contamination with other organelles. Here, we describe an improved method for ER subfractionation that solves other reported methods' main limitations of being time consuming and requiring less starting material. Our protocol involves a combination of different centrifugations and special buffer incubations as well as a fine-tuned method for homogenization followed by western blotting to confirm the purity of the fractions. This protocol contains a method to extract clean ER samples from cells using only five (150 mm) dishes instead of over 50 plates needed in other protocols. In addition, in this article we not only propose a new cell fractionation approach but also an optimized method to isolate pure ER fractions from one mouse liver instead of three, which are commonly used in other protocols. The protocols described here are optimized for time efficiency and designed for seamless execution in any laboratory, eliminating the need for special/patented reagents. Key features • Subcellular fractionation from cells and mouse liver. • Uses only five dishes (150 mm) or one mouse liver to extract highly enriched endoplasmic reticulum without mitochondrial-associated membrane contamination. • These protocols require the use of ultracentrifuges, dounce homogenizers, and/or Teflon Potter Elvehjem. As a result, highly enriched/clean samples are obtained. Graphical overview.</p>","PeriodicalId":8938,"journal":{"name":"Bio-protocol","volume":"13 17","pages":"e4803"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10654912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}