{"title":"Synthesis and structural analysis of cis-bis(1,10-phenanthroline)dicarbonyl ruthenium(II) 1.72-trifluoromethanesulfonate 0.28-hexafluoridophosphate","authors":"T. Takase, Dai Oyama","doi":"10.5155/eurjchem.12.4.389-393.2151","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.389-393.2151","url":null,"abstract":"Ruthenium(II) complexes containing both 1,10-phenanthroline (Phen) and carbonyl (CO) ligands are important molecules for various applications including catalysis. In this work, the molecular structure of [Ru(Phen)2(CO)2]2+ was determined via X-ray diffraction analysis for the first time. The complex exhibits substitutional disorder of one of counter-anions in the asymmetric unit, with different occupancies for CF3SO3- (0.72) and PF6- (0.28). The ruthenium atom is coordinated in a distorted octahedral environment by two carbonyl carbon atoms and four nitrogen atoms from bis-Phen ligands. The cation displays a cis configuration of the carbonyl ligands. Several hydrogen bonds and π-π interactions are present in the crystal. In addition to structural characterization, IR spectral data for the complex is compared with calculated values. These results provide fundamental data for understanding various properties of related ruthenium complexes.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45162761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. M. Somagond, Ahmedraza Mavazzan, Suresh F Madar, M. Sannaikar, Shankar Madan Kumar, S. Inamdar, A. Nesaragi, J. P. Dasappa, R. Kamble
{"title":"X-ray diffraction and Density Functional Theory based structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-1,2,4-triazolone","authors":"S. M. Somagond, Ahmedraza Mavazzan, Suresh F Madar, M. Sannaikar, Shankar Madan Kumar, S. Inamdar, A. Nesaragi, J. P. Dasappa, R. Kamble","doi":"10.5155/eurjchem.12.4.459-468.2160","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.459-468.2160","url":null,"abstract":"This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, V = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47352033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles","authors":"G. C. Montes","doi":"10.5155/eurjchem.12.4.488-492.2152","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.488-492.2152","url":null,"abstract":"Zebrafish (Danio rerio) is a vertebrate animal used in animal model research with complex brains and behaviors similar to humans and associate with low coast become a model attractive for the academic community to seek zebrafish for scientific research. Studies on diseases of the central nervous system (CNS) have advanced and news therapeutic agents were developed for treatment these disorders. Reports suggest that the zebrafish model supports the neurodegenerative studies due functional conservation between human genes implicated in neurodegenerative disorders. The discovery of therapeutic compounds for CNS using the zebrafish model allows to show a neuroprotective action or neurotoxicity that might alter the behavioral changes. Neurotoxicity tests might perform in zebrafish’s embryos into 96 multi-well plates, which reduces the amount of substances used and cost. The bioactive compounds able to penetrate the blood-brain barrier (BBB) have important role physicochemical properties that might be desirable pharmacological effects and zebrafish trials allow if the substances might penetrate BBB and to exert central activity. The assays zebrafish are used to analyze nanoparticles that are small molecules used to explore variety applications in human health. Gold nanoparticles (AuNPs) has important properties which are extremely interest for pharmaceutical area such as drug delivery, cellular imaging, diagnostics, and therapeutic agents. Gold nanoparticles enhances Parkinson symptoms and improved neuroinflammation. Some studies show zebrafish might use to evaluate gold nanoparticles for human health hazard and toxicity studies. There is enormous potential for zebrafish in preclinical assays due to predict pharmacological and toxicity effects. Specific guidelines focused on methodologies in the zebrafish are needed to ensure adequate reproducible trials.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45961757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdalla Gobara Habieballa, Halima Elfadel Alebead, Madena Komi Koko, A. S. Ibrahim, A. Wady
{"title":"Antimicrobial activity and physicochemical properties of Balanites aegyptiaca seed oil","authors":"Abdalla Gobara Habieballa, Halima Elfadel Alebead, Madena Komi Koko, A. S. Ibrahim, A. Wady","doi":"10.5155/eurjchem.12.4.450-453.2142","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.450-453.2142","url":null,"abstract":"This study was aimed to assess the antibacterial and antifungal activities of Balanites aegyptiaca seed oil and characterize the physicochemical properties. Seeds were collected from the local central market, Khartoum-Sudan (2019). The samples were dried under shade and grinded, then the oil was extracted with a Soxhlet extractor using n-hexane. The percentage yield of the extract was found to be 25.64%. The seed oil was tested against Pseudomonas aeruginosa (G-), Escherichia coli (G-), Bacillus subtilis (G+), Staphylococcus aureus (G+), and Candida albicans to assess their antimicrobial properties. The extract of B. aegyptiaca seed oil has antimicrobial activity against most of the organisms tested. The fatty acid profile of the B. aegyptiaca seed oil was analyzed by GC/MS. The results revealed that the presence of five fatty acids, including saturated linoleic acid, oleic acid, and unsaturated palmate and stearic acids, also a unique antioxidant compound butylated hydroxytoluene. The physiochemical properties of the seed oil showed that the oil contained kinetic viscosity (57 cp), density (0.917 g/cm3), refractive index (1.472), acid value (49.96 mg/kg), saponification value (248.75 mg/g), ester number (234.79 mg/kg) and peroxide number (0.02 mg/kg). Through physiochemical analysis, it was found that oil can be used for human consumption due to the percentage yield of unsaturated acids (81%). In addition, the results of the antioxidant activity of the seeds oil showed that the seed oil had moderate antioxidant activity.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44727727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide","authors":"C. Ozer, U. Solmaz, H. Arslan","doi":"10.5155/eurjchem.12.4.439-449.2196","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.439-449.2196","url":null,"abstract":"N-(2-Chlorophenylcarbamothioyl)cyclohexanecarboxamide was characterized by a single crystal X-ray diffraction study. Crystal data for this compound, C14H17ClN2OS; Monoclinic, space group P21/n with Z = 4, a = 5.2385(10) Å, b = 17.902(4) Å, c = 15.021(3) Å, β = 90.86(3)°, V = 1408.5(5) Å3, T = 153(2) K, μ(MoKα) = 0.413 mm-1, Dcalc = 1.400 g/cm3, 9840 reflections measured (7.082° ≤ 2Θ ≤ 50.378°), 2519 unique (Rint = 0.0406, Rsigma = 0.0335) which were used in all calculations. The final R1 was 0.0397 (I > 2σ(I)) and wR2 was 0.0887 (all data). The puckering parameters (q2 = 0.019(3) Å, q3 = 0.578(3) Å, θ = 1.0(3)° and φ = 51(8)°) of the title compound show that the cyclohexane ring adopts a chair conformation. The molecular conformation of the title compound is stabilized by intramolecular hydrogen bonds (N2-H2⋅⋅⋅Cl1, N2-H2⋅⋅⋅O1, and C2-H2A⋅⋅⋅S1) and intermolecular hydrogen bonds (N1-H1⋅⋅⋅S1i and C9-HA⋅⋅⋅S1ii: 2-x, 2-y, 1-z). The intramolecular hydrogen bonds (N2-H2⋅⋅⋅O1 and C2-H2A⋅⋅⋅S1) are also form two pseudo-six-membered rings. Density functional theory optimized structure in the gaseous phase at B3LYP/6-311G(d,p) level of theory has been compared with the experimentally defined molecular structure. The molecular orbitals HOMO and LUMO with the energy gap for the title compound are calculated and the estimated energy gap (ΔE) between the HOMO and LUMO energies levels of the title compound is 3.5399 eV, which implies that the title molecule is very reactive. The Hirshfeld surface analysis reveals that the most important contributions to crystal packing are from H···H (49.0%), H···C/C···H (12.5%), H···Cl/Cl···H (10.9%), and H···S/S···H (10.0%) interactions. The energy-framework calculations are used to analyze and visualize the three-dimensional topology of the crystal packing. The intermolecular energy analysis confirmed a significant contribution of dispersion to the stabilization of molecular packings in the title compound.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49514887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The mystery of chemistry behind the mechanism of action of anti-HIV drugs: A docking approach at an atomic level","authors":"M. Suhail","doi":"10.5155/eurjchem.12.4.432-438.2149","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.432-438.2149","url":null,"abstract":"The effect of HIV-1 on a human’s immune system cannot be ignored. This is the virus that reduces the power of the immune system to fight against any disease. Of course, many anti-HIV drugs are available, and many computational studies have been done to find out their mechanism of action, but the computational study regarding the chemistry behind the mechanism of action was not done yet. Therefore, the main objective of the study was to clarify the chemistry behind the mechanism of action of commercially available anti-HIV drugs. The drugs taken in the presented study were Entry Inhibitors (EIs) and Non-nucleoside reverse transcriptase inhibitors. First, literature data was evaluated computationally to ensure the reliability of the software used for the presented study. It was found that interaction-based experimental results and computationally evaluated results of the literature data were the same. After that, by following the same procedure, a docking study was done on the drugs taken in the current study. In addition, the residues involved in the interactions of EIs and NNRTIs with their receptors were studied to determine the chemistry that acts behind the action of both. It was found that EIs and NNRTIs work differently. It was also predicted that the derivatization of both drugs could make them more effective and active. Therefore, the presented study will be very helpful in the field of medicinal science.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48763820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter","authors":"P. A. Morais, Diego Mendes de Souza, B. Madari","doi":"10.5155/eurjchem.12.4.377-381.2122","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.377-381.2122","url":null,"abstract":"Soil organic matter (SOM) is usually quantified by Walkley-Black titration method or using a spectrophotometric method. This study proposes an alternative method for quantification of SOM using digital image from scanner and mathematical algorithms to replace titration and spectrophotometry procedures. For this, after SOM oxidation by potassium dichromate, digital images were acquired. Posteriorly, extraction of RGB color histograms from images have occurred, followed by the use of multivariate calibration method: partial least squares (PLS). Six soil samples were analyzed. We used the Walkley-Black method as reference. SOM was estimated by images using the PLS tool. The new method, besides being a fast, low cost, and more operational alternative, presented statistically equal results in relation to the reference method, as assessed by the Student t-test and F-test at 95 % confidence.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70588750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, crystal structure, DFT studies, and Hirshfeld surface analysis of N,N'-bis(3-quinolyl-methylene)diphenylethanedione dihydrazone","authors":"G. Patra, A. K. Manna, Dinesh De","doi":"10.5155/eurjchem.12.4.394-400.2153","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.394-400.2153","url":null,"abstract":"The synthesis, characterization, and theoretical studies of a novel hydrazine, N,N’-bis-(3-quinolylmethylene)diphenylethanedione dihydrazone (1) has been reported. The molecular structure has been characterized by room-temperature single-crystal X-ray diffraction which reveals that two quinoline moieties are disposed nearly perpendicularly around the central C-C bond giving a ‘L’ shape of the molecule. This particular geometry gives rise to the hydrogen-bonded supramolecular rectangle of two self-complementary molecules. These supramolecular units are further assembled by π-π interaction. The Hirshfeld surface analysis of compound 1 shows that C···C, C···H, H···H, and N···H interactions of 13.1, 9.9, 52.3, and 7.4%, respectively, which exposed that the main intermolecular interactions were H···H intermolecular interactions. Crystal data for C34H24N6: Triclinic, space group P-1 (no. 2), a = 10.885(3) Å, b = 11.134(3) Å, c = 12.870(3) Å, α = 90.122(6)°, β = 114.141(6)°, γ = 110.277(5)°, V = 1316.1(6) Å3, Z = 2, T = 100(2) K, μ(MoKα) = 0.080 mm-1, Dcalc = 1.304 g/cm3, 7309 reflections measured (3.518° ≤ 2Θ ≤ 39.276°), 2318 unique (Rint = 0.0527, Rsigma = 0.0565) which were used in all calculations. The final R1 was 0.0416 (I > 2σ(I)) and wR2 was 0.1074 (all data).","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49639811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking studies of DMSO/H2O solvate of 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione","authors":"Varun Sharma, B. Banerjee, A. Sharma, V. Gupta","doi":"10.5155/eurjchem.12.4.382-388.2141","DOIUrl":"https://doi.org/10.5155/eurjchem.12.4.382-388.2141","url":null,"abstract":"The title compound, 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione was synthesized via one-pot pseudo three-component reaction between one equivalent of 5-chloroisatin and two equivalents of 4-hydroxycoumarin using mandelic acid as catalyst in aqueous ethanol at 110 °C. The synthesized compound was characterized by FT-IR, 1H NMR, and HRMS techniques. Single crystals were grown for crystal structure determination by using single X-ray crystallography technique. It was found that the crystals are triclinic with space group P-1 and Z = 1. The crystal structure was solved by direct method and refined by full-matrix least-squares procedures to a final R-value of 0.0688 for 6738 observed reflections. The crystal structure was stabilized by elaborate system of O-H···O, N-H···O, and C-H···O interactions with the formation of supramolecular structures. 3D Hirshfeld surfaces and allied 2D fingerprint plots were analyzed for molecular interactions. Molecular docking studies have been performed to get insights into the inhibition property of this molecule for Human topoisomerase IIα.","PeriodicalId":89364,"journal":{"name":"European journal of chemistry (Print)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49232951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}