BiogeosciencesPub Date : 2023-09-27DOI: 10.5194/bg-20-3919-2023
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, Paul A. Covert
{"title":"Estimating marine carbon uptake in the northeast Pacific using a neural network approach","authors":"Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, Paul A. Covert","doi":"10.5194/bg-20-3919-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3919-2023","url":null,"abstract":"Abstract. The global ocean takes up nearly a quarter of anthropogenic CO2 emissions annually, but the variability in this uptake at regional scales remains poorly understood. Here we use a neural network approach to interpolate sparse observations, creating a monthly gridded seawater partial pressure of CO2 (pCO2) data product from January 1998 to December 2019, at 1/12∘ × 1/12∘ spatial resolution, in the northeast Pacific open ocean, a net sink region. The data product (ANN-NEP; NCEI Accession 0277836) was created from pCO2 observations within the 2021 version of the Surface Ocean CO2 Atlas (SOCAT) and a range of predictor variables acting as proxies for processes affecting pCO2 to create nonlinear relationships to interpolate observations at a spatial resolution 4 times greater than leading global products and with better overall performance. In moving to a higher resolution, we show that the internal division of training data is the most important parameter for reducing overfitting. Using our pCO2 product, wind speed, and atmospheric CO2, we evaluate air–sea CO2 flux variability. On sub-decadal to decadal timescales, we find that the upwelling strength of the subpolar Alaskan Gyre, driven by large-scale atmospheric forcing, acts as the primary control on air–sea CO2 flux variability (r2=0.93, p<0.01). In the northern part of our study region, divergence from atmospheric CO2 is enhanced by increased local wind stress curl, enhancing upwelling and entrainment of naturally CO2-rich subsurface waters, leading to decade-long intervals of strong winter outgassing. During recent Pacific marine heat waves from 2013 on, we find enhanced atmospheric CO2 uptake (by as much as 45 %) due to limited wintertime entrainment. Our product estimates long-term surface ocean pCO2 increase at a rate below the atmospheric trend (1.4 ± 0.1 µatm yr−1) with the slowest increase in the center of the subpolar gyre where there is strong interaction with subsurface waters. This mismatch suggests the northeast Pacific Ocean sink for atmospheric CO2 may be increasing.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-27DOI: 10.5194/bg-20-3943-2023
João Pedro Saldanha, Joice Cagliari, Rodrigo Scalise Horodyski, Lucas Del Mouro, Mírian Liza Alves Forancelli Pacheco
{"title":"Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil","authors":"João Pedro Saldanha, Joice Cagliari, Rodrigo Scalise Horodyski, Lucas Del Mouro, Mírian Liza Alves Forancelli Pacheco","doi":"10.5194/bg-20-3943-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3943-2023","url":null,"abstract":"Abstract. Minerals are the fundamental record of abiotic processes over time, while biominerals are one of the most common records of life due to their easy preservation and abundance. However, distinguishing between biominerals and abiotic minerals is challenging due to the superimposition and repetition of geologic processes and the interference of ubiquitous and diverse life on Earth's surface and crust. Mineral dubiofossils, being potential outcomes of both abiotic and biotic environments, emerge as valuable entities that can contribute significantly to the understanding of this issue, facilitating the testing and refinement of biogenicity criteria. The aim of this contribution is to decipher the origin and history of branched mineralized structures that were previously considered mineral dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil. While this material has different forms and refers to biological aspects, it is challenging to associate it with any known fossil group due to the overlapping geological processes occurring in a transitional deposit of Rio do Sul Formation (Itararé Group of the Paraná Basin), particularly in close proximity to a sill from the Serra Geral Group (Lower Cretaceous), which has undergone thermal effects. Given the absence of attributes essential for supporting the initial hypotheses proposing the material as a potential set of sponge spicules or a result of contact metamorphism in Pennsylvanian turbidites, the objects are now investigated as mineral dubiofossils. To address this challenge, we have developed a descriptive protocol for dubiofossils, building upon prior research in the field. This protocol evaluates the following aspects: (1) morphology, texture, and structure; (2) relationship with the matrix; (3) composition; and (4) context. This is done by assessing indigeneity and syngenicity and comparing the specimens with abiotic and biotic products. Applying this protocol to our samples revealed a wide range of morphologies with internal organization, predominantly composed of calcite with impurities such as iron, magnesium, aluminum, and oxygen. The inferred indigeneity suggests the presence of these minerals concurrently with or prior to the intrusion of the sill. Extensive comparisons were made between the studied samples and a broad spectrum of abiotic minerals, as well as controlled, induced, and influenced biominerals from similar contexts. These comparative analyses encompassed sponge spicules; sea urchin and algae skeletons; minerals induced or influenced by fungi, bacteria, and microbial mats; and inorganic pre- and synsedimentary–eodiagenetic minerals like evaporites, springs, and other precipitates, and mesodiagenetic–metamorphic crystals. Despite this comprehensive analysis, no hypothesis emerged as significantly more likely than others. The comparative analysis did allow us to exclude the possibility of the samples being controlled biominerals due to their patternless diversity of","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135579682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-26DOI: 10.5194/bg-20-3873-2023
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, William Horwath
{"title":"Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?","authors":"Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, William Horwath","doi":"10.5194/bg-20-3873-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3873-2023","url":null,"abstract":"Abstract. An adequate supply of bioavailable nitrogen (N) is critical to soil microbial communities and plants. Over the last decades, research efforts have rarely considered the importance of reactive iron (Fe) minerals in the processes that produce or consume bioavailable N in soils compared to other factors such as soil texture, pH, and organic matter (OM). However, Fe is involved in both enzymatic and non-enzymatic reactions that influence the N cycle. More broadly, reactive Fe minerals restrict soil organic matter (SOM) cycling through sorption processes but also promote SOM decomposition and denitrification in anoxic conditions. By synthesizing available research, we show that Fe plays diverse roles in N bioavailability. Fe affects N bioavailability directly by acting as a sorbent, catalyst, and electron transfer agent or indirectly by promoting certain soil features, such as aggregate formation and stability, which affect N turnover processes. These roles can lead to different outcomes in terms of N bioavailability, depending on environmental conditions such as soil redox shifts during wet–dry cycles. We provide examples of Fe–N interactions and discuss the possible underlying mechanisms, which can be abiotic or microbially meditated. We also discuss how Fe participates in three complex phenomena that influence N bioavailability: priming, the Birch effect, and freeze–thaw cycles. Furthermore, we highlight how Fe–N bioavailability interactions are influenced by global change and identify methodological constraints that hinder the development of a mechanistic understanding of Fe in terms of controlling N bioavailability and highlight the areas of needed research.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-25DOI: 10.5194/bg-20-3857-2023
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, Helge Niemann
{"title":"Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea","authors":"Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, Helge Niemann","doi":"10.5194/bg-20-3857-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3857-2023","url":null,"abstract":"Abstract. The Wadden Sea is a coastal system along the fringe of the land–sea borders of Denmark, Germany and the Netherlands. The Wadden Sea is extremely productive and influenced by strong variations in physical and biological forcing factors that act on timescales of hours to seasons. Productive coastal seas are known to dominate the ocean's methane emission to the atmosphere, but knowledge of controls and temporal variations in methane dynamics in these vastly dynamic systems is scarce. Here we address this knowledge gap by measuring methane inventories and methanotrophic activity at a temporal resolution of 1 h over a period of 2 d, repeatedly during four successive seasons in the central Dutch Wadden Sea. We found that methane dynamics varied between colder and warmer seasons, with generally higher water column methane concentrations and methanotrophic activity in the warmer seasons. The efflux of methane to the atmosphere was, on the other hand, lower in the warmer seasons because of lower wind speeds. On a diel scale, tides controlled methanotrophic activity, which increased ∼40 % at low tide compared to high tide. We estimate that methane oxidizing bacteria reduce the methane budget of the Dutch Wadden Sea by only 2 %, while ∼1/3 escapes to the atmosphere and ∼2/3 are flushed out into the open North Sea at ebb tide. Our findings indicate that tides play a key role in controlling methane dynamics and methanotrophic activity and highlight the importance of high-resolution and repeated sampling strategies to resolve methane dynamics in fast-changing coastal systems.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-21DOI: 10.5194/bg-20-3827-2023
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, Juha Mikola
{"title":"A new method for estimating carbon dioxide emissions from drained peatland forest soils for the greenhouse gas inventory of Finland","authors":"Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, Juha Mikola","doi":"10.5194/bg-20-3827-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3827-2023","url":null,"abstract":"Abstract. In peatlands drained for forestry, the soil carbon (C) or carbon dioxide (CO2) balance is affected by both (i) higher heterotrophic CO2-C release from faster decomposing soil organic matter (SOM) and (ii) higher plant litter C input from more vigorously growing forests. This balance and other greenhouse gas (GHG) sinks and sources in managed lands are annually reported by national GHG inventories to the United Nations Climate Change Convention. In this paper, we present a revised, fully dynamic method for reporting the CO2 balance of drained peatland forest soils in Finland. Our method can follow temporal changes in tree biomass growth, tree harvesting and climatic parameters, and it is built on empirical regression models of SOM decomposition and litter input in drained peatland forests. All major components of aboveground and belowground litter input from ground vegetation as well as live trees and trees that died naturally are included, supplemented by newly acquired turnover rates of woody plant fine roots. Annual litter input from harvesting residues is calculated using national statistics of logging and energy use of trees. Leaching, which also exports dissolved C from drained peatlands, is not included. The results are reported as time series from 1990–2021 following the practice in the GHG inventory. Our revised method produces an increasing trend of annual emissions from 0.2 to 2.1 t CO2 ha−1 yr−1 for the period 1990–2021 in Finland (equal to a trend from 1.4 to 7.9 Mt CO2 yr−1 for the entire 4.3 Mha of drained peatland forests), with a statistically significant difference between the years 1990 and 2021. Across the period 1990–2021, annual emissions are on average 1.5 t CO2 ha−1 yr−1 (3.4 Mt CO2 yr−1 for 2.2 Mha area) in warmer southern Finland and −0.14 t CO2 ha−1 yr−1 (−0.3 Mt CO2 yr−1 for 2.1 Mha area) in cooler northern Finland. When combined with data on the CO2 sink created by the growing tree stock, in 2021 the drained peatland forest ecosystems were a source of 1.0 t CO2 ha−1 yr−1 (2.3 Mt CO2 yr−1) in southern Finland and a sink of 1.2 t CO2 ha−1 yr−1 (2.5 Mt CO2 yr−1) in northern Finland. We compare these results to those produced by the semi-dynamic method used earlier in the Finnish GHG inventory and discuss the strengths and vulnerabilities of the new revised method in comparison to more static emission factors.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136101501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-20DOI: 10.5194/bg-20-3803-2023
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, Florent Mouillot
{"title":"High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France","authors":"Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, Florent Mouillot","doi":"10.5194/bg-20-3803-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3803-2023","url":null,"abstract":"Abstract. The frequency and intensity of summer droughts and heat waves in Western Europe have been increasing, raising concerns about the emergence of fire hazard in less fire-prone areas. This exposure of old-growth forests hosting unadapted tree species may cause disproportionately large biomass losses compared to those observed in frequently burned Mediterranean ecosystems. Therefore, analyzing fire seasons from the perspective of exposed burned areas alone is insufficient; we must also consider impacts on biomass loss. In this study, we focus on the exceptional 2022 summer fire season in France and use very high-resolution (10 m) satellite data to calculate the burned area, tree height at the national level, and subsequent ecological impact based on biomass loss during fires. Our high-resolution semi-automated detection estimated 42 520 ha of burned area, compared to the 66 393 ha estimated by the European automated remote sensing detection system (EFFIS), including 48 330 ha actually occurring in forests. We show that Mediterranean forests had a lower biomass loss than in previous years, whereas there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. High biomass losses in the Atlantic pine forests were driven by the large burned area (28 600 ha in 2022 vs. 494 ha yr−1 in 2006–2021 period) but mitigated by a low exposed tree biomass mostly located on intensive management areas. Conversely, biomass loss in temperate forests was abnormally high due to both a 15-fold increase in burned area compared to previous years (3300 ha in 2022 vs. 216 ha in the 2006–2021 period) and a high tree biomass of the forests which burned. Overall, the biomass loss (i.e., wood biomass dry weight) was 0.25 Mt in Mediterranean forests and shrublands, 1.74 Mt in the Atlantic pine forest, and 0.57 Mt in temperate forests, amounting to a total loss of 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests, as reported by the national inventory. A comparison of biomass loss between our estimates and global biomass/burned areas data indicates that higher resolution improves the identification of small fire patches, reduces the commission errors with a more accurate delineation of the perimeter of each fire, and increases the biomass affected. This study paves the way for the development of low-latency, high-accuracy assessment of biomass losses and fire patch contours to deliver a more informative impact-based characterization of each fire year.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-19DOI: 10.5194/bg-20-3791-2023
Nadav Bekin, Nurit Agam
{"title":"Rethinking the deployment of static chambers for CO<sub>2</sub> flux measurement in dry desert soils","authors":"Nadav Bekin, Nurit Agam","doi":"10.5194/bg-20-3791-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3791-2023","url":null,"abstract":"Abstract. The mechanisms underlying the soil CO2 flux (Fs) in dry desert soils are not fully understood. To better understand these processes, we must accurately estimate these small fluxes. The most commonly used method, static chambers, inherently alters the conditions that affect the flux and may introduce errors of the same order of magnitude as the flux itself. Regional and global assessments of annual soil respiration rates are based on extrapolating point measurements conducted with flux chambers. Yet, studies conducted in desert ecosystems rarely discuss potential errors associated with using static chambers in dry and bare soils. We hypothesized that a main source of error is the collar protrusion above the soil surface. During the 2021 dry season, we deployed four automated chambers on collars with different configurations in the Negev, Israel. Fs exhibited a repetitive diel cycle of nocturnal uptake and daytime efflux. CO2 uptake measured over the conventionally protruding collars was significantly lower than over the collars flushed with the soil surface. Using thermal imaging, we proved that the protruding collar walls distorted the ambient heating and cooling regime of the topsoil layer, increasing the mean surface temperatures. Higher soil temperatures during the night suppressed the flux driving forces, i.e., soil–atmosphere CO2 and temperature gradients, ultimately leading to an underestimation of up to 50 % of the actual Fs. Accordingly, the total daily CO2 uptake by the soil in the conventionally deployed collars was underestimated by 35 %. This suggests that desert soils are a larger carbon sink than previously reported and that drylands, which cover approximately 40 % of Earth's terrestrial surface, may play a significant role in the global carbon balance.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-19DOI: 10.5194/bg-20-3767-2023
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, Peter M. Cox
{"title":"Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming","authors":"Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, Peter M. Cox","doi":"10.5194/bg-20-3767-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3767-2023","url":null,"abstract":"Abstract. Reliable estimates of soil carbon change are required to determine the carbon budgets consistent with the Paris Agreement climate targets. This study evaluates projections of soil carbon during the 21st century in Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system models (ESMs) under a range of atmospheric composition scenarios. In general, we find a reduced spread of changes in global soil carbon (ΔCs) in CMIP6 compared to the previous CMIP5 model generation. However, similar reductions were not seen in the derived contributions to ΔCs due to both increases in plant net primary productivity (NPP, named ΔCs,NPP) and reductions in the effective soil carbon turnover time (τs, named ΔCs,τ). Instead, we find a strong relationship across the CMIP6 models between these NPP and τs components of ΔCs, with more positive values of ΔCs,NPP being correlated with more negative values of ΔCs,τ. We show that the concept of “false priming” is likely to be contributing to this emergent relationship, which leads to a decrease in the effective soil carbon turnover time as a direct result of NPP increase and occurs when the rate of increase in NPP is relatively fast compared to the slower timescales of a multi-pool soil carbon model. This finding suggests that the structure of soil carbon models within ESMs in CMIP6 has likely contributed towards the reduction in the overall model spread in future soil carbon projections since CMIP5.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-15DOI: 10.5194/bg-20-3717-2023
Claudia Hinrichs, Peter Köhler, Christoph Völker, Judith Hauck
{"title":"Alkalinity biases in CMIP6 Earth system models and implications for simulated CO<sub>2</sub> drawdown via artificial alkalinity enhancement","authors":"Claudia Hinrichs, Peter Köhler, Christoph Völker, Judith Hauck","doi":"10.5194/bg-20-3717-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3717-2023","url":null,"abstract":"Abstract. The partitioning of CO2 between atmosphere and ocean depends to a large degree not only on the amount of dissolved inorganic carbon (DIC) but also on alkalinity in the surface ocean. That is also why ocean alkalinity enhancement (OAE) is discussed as one potential approach in the context of negative emission technologies. Although alkalinity is thus an important variable of the marine carbonate system, little knowledge exists on how its representation in models compares with measurements. We evaluated the large-scale alkalinity distribution in 14 CMIP6 Earth system models (ESMs) against the observational data set GLODAPv2 and show that most models, as well as the multi-model mean, underestimate alkalinity at the surface and in the upper ocean and overestimate it in the deeper ocean. The decomposition of the global mean alkalinity biases into contributions from (i) physical processes (preformed alkalinity), which include the physical redistribution of biased alkalinity originating from the soft tissue and carbonates pumps; (ii) remineralization; and (iii) carbonate formation and dissolution showed that the bias stemming from the physical redistribution of alkalinity is dominant. However, below the upper few hundred meters the bias from carbonate dissolution can gain similar importance to physical biases, while the contribution from remineralization processes is negligible. This highlights the critical need for better understanding and quantification of processes driving calcium carbonate dissolution in microenvironments above the saturation horizons and implementation of these processes into biogeochemical models. For the application of the models to assess the potential of OAE to increase ocean carbon uptake, a back-of-the-envelope calculation was conducted with each model's global mean surface alkalinity, DIC, and partial pressure of CO2 in seawater (pCO2) as input parameters. We evaluate the following two metrics: (1) the initial pCO2 reduction at the surface ocean after alkalinity addition and (2) the uptake efficiency (ηCO2) after air–sea equilibration is reached. The relative biases of alkalinity versus DIC at the surface affect the Revelle factor and therefore the initial pCO2 reduction after alkalinity addition. The global mean surface alkalinity bias relative to GLODAPv2 in the different models ranges from −85 mmol m−3 (−3.6 %) to +50 mmol m−3 (+2.1 %) (mean: −25 mmol m−3 or −1.1 %). For DIC the relative bias ranges from −55 mmol m−3 (−2.6 %) to 53 mmol m−3 (+2.5 %) (mean: −13 mmol m−3 or −0.6 %). All but two of the CMIP6 models evaluated here overestimate the Revelle factor at the surface by up to 3.4 % and thus overestimate the initial pCO2 reduction after alkalinity addition by up to 13 %. The uptake efficiency, ηCO2, then takes into account that a higher Revelle factor and a higher initial pCO2 reduction after alkalinity addition and equilibration mostly compensate for each other, meaning that resulting DIC differences in th","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135437369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeosciencesPub Date : 2023-09-15DOI: 10.5194/bg-20-3737-2023
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, Armando Sepulveda-Jauregui
{"title":"Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands","authors":"Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, Armando Sepulveda-Jauregui","doi":"10.5194/bg-20-3737-2023","DOIUrl":"https://doi.org/10.5194/bg-20-3737-2023","url":null,"abstract":"Abstract. We present a reliable and robust open dynamic chamber for measuring greenhouse gas exchange in peatlands with minimal disturbance of the ground. This chamber, called the “skirt chamber”, is based on a transparent plastic film placed above an open frame made of sparse interwoven wires and expanded around the base of the chamber below a steel chain that ensures contact to the ground, avoiding damage, trenching, and cutting vegetation. Gas exchange is determined using a portable gas analyzer from a mass balance in which the imperfect sealing of the chamber to the ground is quantified through the injection of a methane pulse. The method was tested on a pristine peatland dominated by Sphagnum magellanicum located on Navarino Island in the subantarctic Magellanic ecoregion in Chile. Our results indicate that the skirt chamber allowed the determination of methane fluxes and ecosystem respiration in about 20 min, with a limit of detection of 0.185 mg CH4 m−2 h−1 and 173 mg CO2 m−2 h−1, respectively. We conclude that the skirt chamber is a minimally intrusive, fast, portable, and inexpensive method that allows the quantification of greenhouse gas emissions with high spatial resolution in remote locations and without delay.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135437517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}