Fernanda Yamamoto Ricardo-da-Silva, Roberto Armstrong-Jr, Mayara Munhoz de Assis Ramos, Marina Vidal-Dos-Santos, Cristiano Jesus Correia, Petra J Ottens, Luiz Felipe Pinho Moreira, Henri G D Leuvenink, Ana Cristina Breithaupt-Faloppa
{"title":"Male versus female inflammatory response after brain death model followed by ex vivo lung perfusion.","authors":"Fernanda Yamamoto Ricardo-da-Silva, Roberto Armstrong-Jr, Mayara Munhoz de Assis Ramos, Marina Vidal-Dos-Santos, Cristiano Jesus Correia, Petra J Ottens, Luiz Felipe Pinho Moreira, Henri G D Leuvenink, Ana Cristina Breithaupt-Faloppa","doi":"10.1186/s13293-024-00581-8","DOIUrl":"10.1186/s13293-024-00581-8","url":null,"abstract":"<p><strong>Background: </strong>Ex vivo lung perfusion (EVLP) is a useful tool for assessing lung grafts quality before transplantation. Studies indicate that donor sex is as an important factor for transplant outcome, as females present higher inflammatory response to brain death (BD) than males. Here, we investigated sex differences in the lungs of rats subjected to BD followed by EVLP.</p><p><strong>Methods: </strong>Male and female Wistar rats were subjected to BD, and as controls sham animals. Arterial blood was sampled for gas analysis. Heart-lung blocks were kept in cold storage (1 h) and normothermic EVLP carried out (4 h), meanwhile ventilation parameters were recorded. Perfusate was sampled for gas analysis and IL-1β levels. Leukocyte infiltration, myeloperoxidase presence, IL-1β gene expression, and long-term release in lung culture (explant) were evaluated.</p><p><strong>Results: </strong>Brain dead females presented a low lung function after BD, compared to BD-males; however, at the end of the EVLP period oxygenation capacity decreased in all BD groups. Overall, ventilation parameters were maintained in all groups. After EVLP lung infiltrate was higher in brain dead females, with higher neutrophil content, and accompanied by high IL-1β levels, with increased gene expression and concentration in the culture medium (explant) 24 h after EVLP. Female rats presented higher lung inflammation after BD than male rats. Despite maintaining lung function and ventilation mechanics parameters for 4 h, EVLP was not able to alter this profile.</p><p><strong>Conclusion: </strong>In this context, further studies should focus on therapeutic measures to control inflammation in donor or during EVLP to increase lung quality.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"11"},"PeriodicalIF":4.9,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carla Perpiñá-Clérigues, Susana Mellado, Cristina Galiana-Roselló, María Fernández-Regueras, Miguel Marcos, Francisco García-García, María Pascual
{"title":"Novel insight into the lipid network of plasma extracellular vesicles reveal sex-based differences in the lipidomic profile of alcohol use disorder patients","authors":"Carla Perpiñá-Clérigues, Susana Mellado, Cristina Galiana-Roselló, María Fernández-Regueras, Miguel Marcos, Francisco García-García, María Pascual","doi":"10.1186/s13293-024-00584-5","DOIUrl":"https://doi.org/10.1186/s13293-024-00584-5","url":null,"abstract":"Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with “negative intrinsic curvature” and “positive intrinsic curvature”, respectively. Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD. Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin l","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"8 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alec C Horton, Mary M Wilkinson, Isabella Kilanowski-Doroh, Zhejun Dong, Jiao Liu, Benard O Ogola, Bruna Visniauskas, Sarah H Lindsey
{"title":"Dihydrotestosterone induces arterial stiffening in female mice.","authors":"Alec C Horton, Mary M Wilkinson, Isabella Kilanowski-Doroh, Zhejun Dong, Jiao Liu, Benard O Ogola, Bruna Visniauskas, Sarah H Lindsey","doi":"10.1186/s13293-024-00586-3","DOIUrl":"10.1186/s13293-024-00586-3","url":null,"abstract":"<p><strong>Background: </strong>Androgens are important sex hormones in both men and women and are supplemented when endogenous levels are low, for gender transitioning, or to increase libido. Androgens also circulate at higher levels in women with polycystic ovarian syndrome, a condition that increases the risk for cardiovascular diseases including hypertension and arterial stiffness. Since our previous work shows an important role for the G protein-coupled estrogen receptor (GPER) in arterial stiffness, we hypothesized that other hormones including androgens may impact arterial stiffness in female mice via downregulation of GPER.</p><p><strong>Methods: </strong>The impact of the non-aromatizable androgen dihydrotestosterone (DHT), the glucocorticoid dexamethasone, and the progestin medroxyprogesterone acetate (all 100 nM for 24 h) on GPER and ERα expression was assessed in cultured vascular smooth muscle cells using droplet digital PCR (ddPCR). To assess the in vivo impact of the DHT-induced downregulation of GPER, female ovary-intact C57Bl/6 mice at 15-16 weeks of age were treated with silastic capsules containing DHT for 4 weeks, one with a dosage expected to mimic human male DHT levels and another to double the expected human concentration (n = 8-9/group).</p><p><strong>Results: </strong>In cultured vascular smooth muscle cells, GPER mRNA was decreased by DHT (P = 0.001) but was not impacted by dexamethasone or medroxyprogesterone. In contrast, ERα expression in cultured cells was significantly suppressed by all three hormones (P < 0.0001). In control mice or mice treated with a single or double dose of DHT, a dose-dependent increase in body weight was observed (control 22 ± 2 g, single dose 24 ± 2 g, double dose 26 ± 2 g; P = 0.0002). Intracarotid stiffness measured via pulse wave velocity showed a more than two-fold increase in both DHT-treated groups (control 1.9 ± 0.3 m/s, single dose 4.3 ± 0.8 m/s, double dose 4.8 ± 1.0 m/s). This increase in arterial stiffness occurred independent of changes in blood pressure (P = 0.59). Histological analysis of aortic sections using Masson's trichrome showed a significant decrease in collagen between the control group (24 ± 5%) and the double dose group (17 ± 3%, P = 0.007), despite no changes in aortic wall thickness or smooth muscle content. Lastly, ddPCR showed that in vivo DHT treatment decreased aortic expression of both GPER (control 20 ± 5, single dose 10.5 ± 5.6, double dose 10 ± 4 copies/ng; P = 0.001) and ERα (control 54 ± 2, single dose 24 ± 13, and double dose 23 ± 12 copies/ng; P = 0.003).</p><p><strong>Conclusions: </strong>These findings indicate that androgen promotes arterial stiffening and cardiovascular damage in female mice and is associated with decreased estrogen receptor expression. These data are important for transgender men, women using testosterone for fitness or reduced libido, as well as patients with polycystic ovarian syndrome.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"9"},"PeriodicalIF":4.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ece Bayram, David G. Coughlin, Ravi Rajmohan, Irene Litvan
{"title":"Sex differences for clinical correlates of substantia nigra neuron loss in people with Lewy body pathology","authors":"Ece Bayram, David G. Coughlin, Ravi Rajmohan, Irene Litvan","doi":"10.1186/s13293-024-00583-6","DOIUrl":"https://doi.org/10.1186/s13293-024-00583-6","url":null,"abstract":"Lewy body dementia (LBD) phenotype is associated with the presence and degree of Lewy body, Alzheimer’s pathologies, and substantia nigra neuron loss. Nigral neuron loss is associated with parkinsonism in LBD, and females with LBD are less likely than males to have parkinsonism. As sex differences were reported for clinical correlates of Lewy body and Alzheimer’s pathologies, we aimed to investigate whether there are also sex differences for correlates of nigral neuron loss. Data were obtained from the National Alzheimer’s Coordinating Center for females (n = 159) and males (n = 263) with brainstem, limbic, and neocortical Lewy body pathology. Sex differences for the nigral neuron loss’ association with Lewy body pathology staging and core clinical LBD features (cognitive fluctuations, visual hallucinations, rapid eye movement sleep behavior disorder, parkinsonism) during follow-up were analyzed with generalized linear models adjusting for age and Alzheimer’s pathology staging. Whether any of the core clinical features at the time of dementia onset can predict underlying nigral neuron loss for females and males were also analyzed with generalized linear models. Compared to males, females died older and had higher levels of Braak tau staging, but had similar levels of Lewy body pathology staging and nigral neuron loss. Females were less likely than males to have a clinical Lewy body disease diagnosis during follow-up. More advanced Lewy body pathology staging was associated with more nigral neuron loss, more so for males than females. More nigral neuron loss was associated with parkinsonism and clinical LBD diagnosis during follow-up, more so for males than females. Across the subgroup with dementia (40 females, 58 males), core LBD features at first visit with dementia were not associated with nigral neuron loss. Nigral neuron loss’ association with Lewy body pathology staging and core LBD features can differ by sex. Compared to males, females with Lewy body pathology have a higher risk of underdiagnosis. There is a need to elucidate the mechanisms underlying sex differences for pathology and clinicopathological correlations to advance diagnostic and therapeutic efforts in LBD. Lewy body dementia (LBD) is the third most common dementia associated with Lewy body pathology, Alzheimer’s pathology, and substantia nigra loss. It is often less recognized in females compared to males, because the typical symptoms are less evident in females. In this study, we investigated whether substantia nigra neuron loss plays a role in the atypical presentation of LBD in females, contributing to the underdiagnosis compared to males. We analyzed data from 159 females and 263 males with pathological Lewy body disease obtained from the National Alzheimer's Coordinating Center. Females tended to be older at the time of death and had more tau buildup, but similar levels of Lewy body pathology and substantia nigra neuron loss compared to males. When we compared males and ","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"2 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Garcia-Fernandez, Antonio P. Arenas-de Larriva, Javier Lopez-Moreno, Francisco M. Gutierrez-Mariscal, Juan L. Romero-Cabrera, Helena Molina-Abril, Jose D. Torres-Peña, Diego Rodriguez-Cano, Maria M. Malagon, Jose M. Ordovas, Javier Delgado-Lista, Pablo Perez-Martinez, Jose Lopez-Miranda, Antonio Camargo
{"title":"Sex-specific differences in intestinal microbiota associated with cardiovascular diseases","authors":"Helena Garcia-Fernandez, Antonio P. Arenas-de Larriva, Javier Lopez-Moreno, Francisco M. Gutierrez-Mariscal, Juan L. Romero-Cabrera, Helena Molina-Abril, Jose D. Torres-Peña, Diego Rodriguez-Cano, Maria M. Malagon, Jose M. Ordovas, Javier Delgado-Lista, Pablo Perez-Martinez, Jose Lopez-Miranda, Antonio Camargo","doi":"10.1186/s13293-024-00582-7","DOIUrl":"https://doi.org/10.1186/s13293-024-00582-7","url":null,"abstract":"Cardiovascular diseases (CVD), including coronary heart disease (CHD), display a higher prevalence in men than women. This study aims to evaluate the variations in the intestinal microbiota between men and women afflicted with CHD and delineate these against a non-CVD control group for each sex. Our research was conducted in the framework of the CORDIOPREV study, a clinical trial which involved 837 men and 165 women with CHD. We contrasted our findings with a reference group of 375 individuals (270 men, 105 women) without CVD. The intestinal microbiota was examined through 16S metagenomics on the Illumina MiSeq platform and the data processed with Quiime2 software. Our results showed a sex-specific variation (beta diversity) in the intestinal microbiota, while alpha-biodiversity remained consistent across both sexes. Linear discriminant analysis effect size (LEfSe) analysis revealed sex-centric alterations in the intestinal microbiota linked to CVD. Moreover, using random forest (RF) methodology, we identified seven bacterial taxa—g_UBA1819 (Ruminococcaceae), g_Bilophila, g_Subdoligranulum, g_Phascolarctobacterium, f_Barnesiellaceae, g_Ruminococcus, and an unknown genus from the Ruminococcaceae family (Ruminococcaceae incertae sedis)—as key discriminators between men and women diagnosed with CHD. The same taxa also emerged as critical discriminators between CHD-afflicted and non-CVD individuals, when analyzed separately by sex. Our findings suggest a sex-specific dysbiosis in the intestinal microbiota linked to CHD, potentially contributing to the sex disparity observed in CVD incidence. Trial registration Clinical Trials.gov.Identifier NCT00924937. The frequency with which cardiovascular diseases occur differs in men and women as it appears with greater frequency in men. Moreover, it has been known for years that the community of bacteria living in our intestine, also known as the gut microbiota, influences the development of these diseases. Indeed, nowadays it known the influence of the intestinal microbiota in the development of atherosclerosis, the pathological process which is responsible for the three main causes of cardiovascular diseases: coronary heart disease, cerebrovascular disease and peripheral arterial disease. This study shows the differences in the community of bacteria living in the gut of men and those living in the gut of women, so that these differences could explain, at least in part, the differences in the frequency with which cardiovascular diseases appear between men and women. Our results suggest that the dysbiosis of the intestinal microbiota associated with CHD seems to be partially sex-specific, which may influence the sexual dimorphism in its incidence. Moreover, the identification of the mechanisms responsible for sexual dimorphism in the incidence of metabolic and cardiovascular disease is of particular importance when developing effective strategies and therapies aimed at reducing their incidence and recurrence. I","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"11 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colin Salaün, Marine Courvalet, Léna Rousseau, Kévin Cailleux, Jonathan Breton, Christine Bôle-Feysot, Charlène Guérin, Marion Huré, Alexis Goichon, Jean-Claude do Rego, Pierre Déchelotte, David Ribet, Najate Achamrah, Moïse Coëffier
{"title":"Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut-microbiota composition during activity-based anorexia in mice.","authors":"Colin Salaün, Marine Courvalet, Léna Rousseau, Kévin Cailleux, Jonathan Breton, Christine Bôle-Feysot, Charlène Guérin, Marion Huré, Alexis Goichon, Jean-Claude do Rego, Pierre Déchelotte, David Ribet, Najate Achamrah, Moïse Coëffier","doi":"10.1186/s13293-023-00576-x","DOIUrl":"10.1186/s13293-023-00576-x","url":null,"abstract":"<p><strong>Rationale: </strong>Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition.</p><p><strong>Methods: </strong>From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests.</p><p><strong>Results: </strong>ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model.</p><p><strong>Conclusions: </strong>This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"6"},"PeriodicalIF":7.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139431841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saluda Stapleton, Grace Welch, Lindsay DiBerardo, Linnea R Freeman
{"title":"Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome","authors":"Saluda Stapleton, Grace Welch, Lindsay DiBerardo, Linnea R Freeman","doi":"10.1186/s13293-023-00580-1","DOIUrl":"https://doi.org/10.1186/s13293-023-00580-1","url":null,"abstract":"Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of 40 years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences. ","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"13 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louis Cartier, Mina Guérin, Fanny Saulnier, Ioana Cotocea, Amine Mohammedi, Fadila Moussaoui, Sarah Kheloui, Robert-Paul Juster
{"title":"Sex and gender correlates of sexually polymorphic cognition","authors":"Louis Cartier, Mina Guérin, Fanny Saulnier, Ioana Cotocea, Amine Mohammedi, Fadila Moussaoui, Sarah Kheloui, Robert-Paul Juster","doi":"10.1186/s13293-023-00579-8","DOIUrl":"https://doi.org/10.1186/s13293-023-00579-8","url":null,"abstract":"Sexually polymorphic cognition (SPC) results from the interaction between biological (birth-assigned sex (BAS), sex hormones) and socio-cultural (gender identity, gender roles, sexual orientation) factors. The literature remains quite mixed regarding the magnitude of the effects of these variables. This project used a battery of classic cognitive tests designed to assess the influence of sex hormones on cognitive performance. At the same time, we aimed to assess the inter-related and respective effects that BAS, sex hormones, and gender-related factors have on SPC. We recruited 222 adults who completed eight cognitive tasks that assessed a variety of cognitive domains during a 150-min session. Subgroups were separated based on gender identity and sexual orientation and recruited as follows: cisgender heterosexual men (n = 46), cisgender non-heterosexual men (n = 36), cisgender heterosexual women (n = 36), cisgender non-heterosexual women (n = 38), gender diverse (n = 66). Saliva samples were collected before, during, and after the test to assess testosterone, estradiol, progesterone, cortisol, and dehydroepiandrosterone. Psychosocial variables were derived from self-report questionnaires. Cognitive performance reflects sex and gender differences that are partially consistent with the literature. Interestingly, biological factors seem to better explain differences in male-typed cognitive tasks (i.e., spatial), while psychosocial factors seem to better explain differences in female-typed cognitive tasks (i.e., verbal). Our results establish a better comprehension of SPC over and above the effects of BAS as a binary variable. We highlight the importance of treating sex as a biological factor and gender as a socio-cultural factor together since they collectively influence SPC. Many studies show sex differences in cognitive abilities. In general, women outperform men in verbal tasks and fine motor skills, while men outperform women in spatial orientation and mental rotation tasks. These differences underlie research on sexually polymorphic cognition, a concept influenced by sex hormones (estradiol, progesterone, and testosterone) as well as birth-assigned sex. In addition to these biological factors, socio-cultural gender factors such as gender identity (the gender we feel and embody), gender roles (masculine and feminine expressions based on stereotypes), as well as sexual orientation are all known to influence cognition as well. We provide a broader understanding by accounting for both sex and gender factors. Our team recruited 222 adults separated into 5 sub-groups based on birth-assigned sex, gender identity, and sexual orientation. Each participant completed eight sexually polymorphic cognitive tasks. In this 150-min experimental protocol, saliva samples were collected before, during, and after the test to assess testosterone, estradiol, progesterone, cortisol, and dehydroepiandrosterone. Psychosocial variables were derived from self-report quest","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"104 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marlene Zubillaga, Julia Tau, Diana Rosa, M José Bellini, Nathalie Arnal
{"title":"Sex-dependent effect of sublethal copper concentrations on de novo cholesterol synthesis in astrocytes and their possible links to variations in cholesterol and amyloid precursor protein levels in neuronal membranes.","authors":"Marlene Zubillaga, Julia Tau, Diana Rosa, M José Bellini, Nathalie Arnal","doi":"10.1186/s13293-023-00578-9","DOIUrl":"10.1186/s13293-023-00578-9","url":null,"abstract":"<p><strong>Background: </strong>Cholesterol (Cho) is an essential lipophilic molecule in cells; however, both its decrease and its increase may favor the development of neurological diseases such as Alzheimer's disease (AD). Although copper (Cu) is an essential trace metal for cells, the increased plasma concentration of its free form has been linked with AD development and severity. AD affects aged people, but its prevalence and severity are higher in women than in men. We have previously shown that Cu promotes Cho de novo synthesis in immature neurons as well as increased Cho in membrane rafts and Aβ levels in culture medium, but there are no results yet regarding sex differences in the effects of sublethal Cu exposure on Cho de novo synthesis.</p><p><strong>Methods: </strong>We examined the potential sex-specific impact of sublethal Cu concentrations on de novo Cho synthesis in primary cultures of male and female astrocytes. We also explored whether this had any correlation with variations in Cho and APP levels within neuronal membrane rafts.</p><p><strong>Results: </strong>Flow cytometry analysis demonstrated that Cu treatment leads to a greater increase in ROS levels in female astrocytes than in males. Furthermore, through RT-PCR analysis, we observed an upregulation of SREBP-2 and HMGCR. Consistently, we observed an increase in de novo Cho synthesis. Finally, western blot analysis indicated that the levels of ABCA1 increase after Cu treatment, accompanied by a higher release of radiolabeled Cho and an elevation in Cho and APP levels in neuronal membrane rafts. Importantly, all these results were significantly more pronounced in female astrocytes than in males.</p><p><strong>Conclusions: </strong>Our findings confirm that Cu stimulates Cho synthesis in astrocytes, both in a ROS-dependent and -independent manner. Moreover, female astrocytes displayed elevated levels of HMGCR, and de novo Cho synthesis compared to males following TBH and Cu treatments. This corresponds with higher levels of Cho released into the culture medium and a more significant Cho and APP rise within neuronal rafts. We consider that the increased risk of AD in females partly arises from sex-specific responses to metals and/or exogenous substances, impacting key enzyme regulation in various biochemical pathways, including HMGCR.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"4"},"PeriodicalIF":7.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa-Marie Legault, Mélanie Breton-Larrivée, Alexandra Langford-Avelar, Anthony Lemieux, Serge McGraw
{"title":"Sex-based disparities in DNA methylation and gene expression in late-gestation mouse placentas.","authors":"Lisa-Marie Legault, Mélanie Breton-Larrivée, Alexandra Langford-Avelar, Anthony Lemieux, Serge McGraw","doi":"10.1186/s13293-023-00577-w","DOIUrl":"10.1186/s13293-023-00577-w","url":null,"abstract":"<p><strong>Background: </strong>The placenta is vital for fetal development and its contributions to various developmental issues, such as pregnancy complications, fetal growth restriction, and maternal exposure, have been extensively studied in mice. The placenta forms mainly from fetal tissue and therefore has the same biological sex as the fetus it supports. Extensive research has delved into the placenta's involvement in pregnancy complications and future offspring development, with a notable emphasis on exploring sex-specific disparities. However, despite these investigations, sex-based disparities in epigenetic (e.g., DNA methylation) and transcriptomic features of the late-gestation mouse placenta remain largely unknown.</p><p><strong>Methods: </strong>We collected male and female mouse placentas at late gestation (E18.5, n = 3/sex) and performed next-generation sequencing to identify genome-wide sex differences in transcription and DNA methylation.</p><p><strong>Results: </strong>Our comparison between male and female revealed 358 differentially expressed genes (DEGs) on autosomes, which were associated with signaling pathways involved in transmembrane transport and the responses to viruses and external stimuli. X chromosome DEGs (n = 39) were associated with different pathways, including those regulating chromatin modification and small GTPase-mediated signal transduction. Differentially methylated regions (DMRs) were more common on the X chromosomes (n = 3756) than on autosomes (n = 1705). Interestingly, while most X chromosome DMRs had higher DNA methylation levels in female placentas and tended to be included in CpG dinucleotide-rich regions, 73% of autosomal DMRs had higher methylation levels in male placentas and were distant from CpG-rich regions. Several DEGs were correlated with DMRs. A subset of the DMRs present in late-stage placentas were already established in mid-gestation (E10.5) placentas (n = 348 DMRs on X chromosome and 19 DMRs on autosomes), while others were acquired later in placental development.</p><p><strong>Conclusion: </strong>Our study provides comprehensive lists of DEGs and DMRs between male and female that collectively cause profound differences in the DNA methylation and gene expression profiles of late-gestation mouse placentas. Our results demonstrate the importance of incorporating sex-specific analyses into epigenetic and transcription studies to enhance the accuracy and comprehensiveness of their conclusions and help address the significant knowledge gap regarding how sex differences influence placental function.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"2"},"PeriodicalIF":7.9,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}