{"title":"Topological regulation in polysilsesquioxanes for achieving super-hard and flexible membranes: insights from molecular simulation.","authors":"Peng Xu, Yuxin Sun, Song Yang, Guangxin Chen, Jiali Qu, Qifang Li, Zheng Zhou","doi":"10.1039/d4mh01481b","DOIUrl":"https://doi.org/10.1039/d4mh01481b","url":null,"abstract":"<p><p>Cage-like and ladder-like polysilsesquioxane, named EPOSS and ELPSQ, were synthesized and employed as precursors to develop a UV-curable membrane exhibiting remarkable hardness, superior flexibility, exceptional transparency and excellent friction resistance. Nanoindentation analysis demonstrates that the precise control of the Silicane molecular frameworks by adding a small quantity of EPOSS to ELPSQ can significantly enhance the hardness of the membranes. The resulting hardness value reaches a record 1.56 GPa, which is notably higher than all of the reported rigid polymer membranes. Meanwhile, the membrane displays superior flexural properties with a minimum radius of curvature of 0.35 mm, and after 10 000 folds in the cyclic flexure test, only slight creases were observed even under a polarizing microscope. The molecular dynamics simulation reveals how different molecular stereo topologies endow materials with astonishing hardness and excellent flexibility, thereby formulating a novel strategy for material design. ELPSQ's trapezoidal topology exhibits anisotropy, enabling the material to bend while maintaining super hardness. EPOSS's cage topology endows materials with a higher modulus and improved bending performance. Incorporating an appropriate amount of EPOSS into the ELPSQ can inhibit the movement of molecular chains, thereby enhancing the mechanical properties of the resin. This work presents a new strategy for preparing membranes with super-hardness and high flexibility, and investigates how the cage-like topological structure influences the hardness of resin systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeonyeob Seo, Woo Mi Ryu, Jaehyun Jang, Seongjun Park
{"title":"Thermally drawn porous sutures for controlled drug release using thermally induced phase separation.","authors":"Hyeonyeob Seo, Woo Mi Ryu, Jaehyun Jang, Seongjun Park","doi":"10.1039/d4mh01429d","DOIUrl":"https://doi.org/10.1039/d4mh01429d","url":null,"abstract":"<p><p>Surgical sutures have increasingly been developed to incorporate functionalities beyond wound closure, including the promotion of tissue regeneration and monitoring of tissue conditions. However, conventional surface treatment methods for inducing functionality to sutures have limitations, primarily due to restricted material integration and the inability to form complex internal morphologies. This study introduces a customizable porous (CP) suture fabricated through a combination of the thermal drawing process (TDP) and thermally induced phase separation (TIPS), resulting in a microscale porous structure. The CP suture developed <i>via</i> the TIPS-TDP overcomes the limitations of surface-coated drug delivery sutures by enabling controlled drug release. By engineering the TIPS-TDP, we produced CP sutures with tunable pore sizes, allowing precise control over drug release profiles and degradation rates suitable for various therapeutic applications. Additionally, the versatility of the TIPS-TDP facilitates the integration of multiple materials, supporting the development of innovative functional sutures capable of dual-drug delivery. This platform demonstrates its potential in advancing the fabrication of complex, multi-functional sutures for extensive biomedical applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeong Hun Choi, Nitee Kumari, Anubhab Acharya, Amit Kumar, Sanghwang Park, Dongyeon Ro, Jongcheol Seo, Eunhye Lee, Jee Hwan Bae, Dong Won Chun, Kyungtaek Oh, Sunmin Ryu, In Su Lee
{"title":"Solid-state self carbo-passivation for refurbishing colloidal dispersity of catalytic silica nanoreactors.","authors":"Jeong Hun Choi, Nitee Kumari, Anubhab Acharya, Amit Kumar, Sanghwang Park, Dongyeon Ro, Jongcheol Seo, Eunhye Lee, Jee Hwan Bae, Dong Won Chun, Kyungtaek Oh, Sunmin Ryu, In Su Lee","doi":"10.1039/d4mh01623h","DOIUrl":"https://doi.org/10.1039/d4mh01623h","url":null,"abstract":"<p><p>Silica-based nanostructures are among the most utilized materials. However, a persistent challenge is their irreversible agglomeration upon drying and heat treatments, restricting their homogeneous colloidal re-dispersion - a mandatory requirement for diverse bio-applications. We address this bottleneck by developing a self carbo-passivation (SCP) strategy: silica nanoparticles (NPs), pre-included with the catalytic metal precursors and organosilanes undergo <i>in vacuo</i> thermochemical conversion with highly controlled interior-to-surface segregation of nanometer-scale \"carbonaceous skin patches\". This self-generated inert passivate shielding phenomenon at the individual NP level completely inhibits interparticle cross-linking, stopping chemical agglomeration and enhancing colloidal stability. By SCP, we synthesized silica-based magnetic-catalytic nanoreactors for magnetic field-induced catalysis inside living cells, by benefitting from the convenient high colloidal stability in bio-media, easy endocytosis and protective accessibility to the catalytic site in the complex bio-environment. The present work demonstrates deep mechanistic insight into unexplored solid-state nanoscopic chemical passivation phenomena, dramatically influencing NP surface characteristics, playing a critical role in solution-based applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving electron injection of organic light-emitting transistors <i>via</i> interface layer design.","authors":"Xiangyu Tan, Qingbin Li, Zhengsheng Qin, Dan Liu, Yumin Liu, Pu Wang, Ziyi Xie, Zhagen Miao, Yanan Lei, Yu Zhang, Pengsong Wang, Xianneng Chen, Zhenling Liu, Can Gao, Wenping Hu, Hao-Li Zhang, Huanli Dong","doi":"10.1039/d4mh00870g","DOIUrl":"https://doi.org/10.1039/d4mh00870g","url":null,"abstract":"<p><p>Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene <i>S</i>,<i>S</i>-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (<i>μ</i>maxh: 2.17 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>, <i>μ</i>maxe: 0.053 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>) was effortlessly obtained. Furthermore, the shift of the electroluminescent region was obviously observed upon modulation of gate voltage, which demonstrates efficient electron injection and intrinsic ambipolar transporting properties in devices. This study provides a new avenue for regulating the interface in electroluminescent devices towards high performance simple-structured OLETs in applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in atmospheric water harvesting technology and its development.","authors":"Tianyi Xiang, Shangzhen Xie, Guopeng Chen, Congji Zhang, Zhiguang Guo","doi":"10.1039/d4mh00986j","DOIUrl":"https://doi.org/10.1039/d4mh00986j","url":null,"abstract":"<p><p>Water scarcity is a pressing issue worldwide. Given the ample atmospheric water sources, water harvesting from the atmosphere presents a promising solution to this challenge. In recent years, the solar-driven atmospheric water harvesting technology utilizing an adsorption-desorption process has garnered considerable interest. This is attributed to the abundant availability of solar energy, advanced adsorbents, improved photothermal materials, sophisticated interface heating system designs, and efficient thermal management techniques, all of which collectively enhance conversion efficiency. This article provides an overview of the advancements in atmospheric water collection, specifically focusing on hygroscopic water harvesting driven by solar energy. The discussion also encompasses the roles of materials, surfaces, equipment, and systems in enhancing water collection efficiency. By outlining both the advantages and challenges of atmospheric water collection, this study aims to shed light on future research directions in this research field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yizong Li, Sooyeon Noh Coodley, Si Chen, Penghao Dong, Su Li, Shanshan Yao
{"title":"Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing.","authors":"Yizong Li, Sooyeon Noh Coodley, Si Chen, Penghao Dong, Su Li, Shanshan Yao","doi":"10.1039/d4mh01209g","DOIUrl":"https://doi.org/10.1039/d4mh01209g","url":null,"abstract":"<p><p>Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Margot Jacquet, Miriam Izzo, Piotr Wróbel, Marcin Strawski, Massimo Trotta, Rafał Jurczakowski, Joanna Kargul
{"title":"Space-confined mediation of electron transfer for efficient biomolecular solar conversion.","authors":"Margot Jacquet, Miriam Izzo, Piotr Wróbel, Marcin Strawski, Massimo Trotta, Rafał Jurczakowski, Joanna Kargul","doi":"10.1039/d4mh01266f","DOIUrl":"10.1039/d4mh01266f","url":null,"abstract":"<p><p>Solar-converting nanosystems using self-renewing biomaterial resources carry great potential for developing sustainable technologies to ameliorate climate change and minimize reliance on fossil fuels. By mimicking natural photosynthesis, diverse proof-of-concept biosolar systems have been used to produce green electricity, fuels and chemicals. Efforts so far have focused on optimizing light harvesting, biocatalyst loading and electron transfer (ET), however, the long-term performance of best-performing systems remains a major challenge due to the intensive use of diffusive, toxic mediators. To overcome this limitation, we developed a rationally designed nanosystem based on the entrapment of non-toxic mediator, ferrocene dimethanol (Fc), localized at the abiotic-biotic molecular interface that efficiently promoted ET between electrode surface and two photosynthetic proteins: cytochrome <i>c</i> and photosystem I. We demonstrate that space-confined Fc mediators (1 nM) are as effective in terms of ET kinetics as a 500 000-fold higher concentration of freely-diffusive Fc. The Fc-confined biophotocathodes showed a milestone photocurrent density of 14 μA cm<sup>-2</sup> under oxic conditions compared to analogous planar (2D) biophotoelectrodes, with a photoconductive biolayer stable for over 5 months. The space-confined ET mediation reported in this work opens a new avenue for efficiently interfacing biomachineries, providing a benchmark design advancement in the quest for viable biohybrid technologies.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhangwen Xie, Yufei Tang, Ziyun Luo, Yagang Zhang, Wanxing Zheng, Xi Chen, Qingnan Meng, Chen Tang, Zhaowei Liu, Kang Zhao
{"title":"Dual metal synergistic modulation of boron nitride for high-temperature wave-transparent metamaterials.","authors":"Zhangwen Xie, Yufei Tang, Ziyun Luo, Yagang Zhang, Wanxing Zheng, Xi Chen, Qingnan Meng, Chen Tang, Zhaowei Liu, Kang Zhao","doi":"10.1039/d4mh01020e","DOIUrl":"https://doi.org/10.1039/d4mh01020e","url":null,"abstract":"<p><p>Electromagnetic metamaterials have demonstrated immense potential in the development of novel high-temperature wave-transparent materials, yet the requirements of their intricate structural design and strict stability pose dual challenges, particularly in high-speed radome applications. A strategy involving the synergistic modulation of boron nitride (BN) by dual metallic elements of Ca and Al (0.5Ca-0.5Al-BN) was proposed in this study, which elegantly integrates the advantages of metamaterial-like split ring resonator (SRR) features and h-BN's oxidation resistance enhancement. The highest wave transmittance at room temperature reaches 0.96 at 2-18 GHz. Notably, Al elements play a pivotal dual role in: (1) facilitating the solid solution of Ca to optimize the formation of metamaterial-like structures and (2) generating an amorphous Al<sub>2</sub>O<sub>3</sub> protective layer to preferentially defend against surface oxidation. This further prevents the breakdown of metamaterial characteristics at high temperatures, thereby striking a dual balance between the preservation of metamaterial-like structures and the high temperature stability of BN. Notably, 0.5Ca-0.5Al-BN retains its metamaterial-like characteristics, with a low permittivity not exceeding 2 even after exposure to 1500 °C oxidation. The corresponding wave transmission rate remains above 0.7 in most frequency bands at incidence angles of 0°, 10°, and 30°, ensuring superior wave-transparent properties. Furthermore, 0.5Ca-0.5Al-BN exhibits great hydrophobicity, benefiting resistance to rain and snow erosion. By integrating the merits between fundamental materials and metamaterials, this work transcends the limitations of conventional metamaterial design and offers fresh insights and empirical support for developing high-speed aircraft radome materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Zhang, Bo Jiang, Yuming Gao, Lin Li, Dawei Tang
{"title":"Photothermally-activated suspended aerogel triggers a biphasic interface reaction for high-efficiency and additive-free hydrogen generation.","authors":"Qian Zhang, Bo Jiang, Yuming Gao, Lin Li, Dawei Tang","doi":"10.1039/d4mh00964a","DOIUrl":"https://doi.org/10.1039/d4mh00964a","url":null,"abstract":"<p><p>The need for a sustainable hydrogen supply has sparked significant efforts to develop effective liquid hydrogen carriers with high hydrogen content that can be safely stored and undergo controlled hydrogen release. However, a major challenge lies in the ultralow hydrogen evolution rate caused by the direct dehydrogenation of liquid hydrogen carriers. Conventionally, accelerant additives are employed to improve the dehydrogenation rate, but this strategy inevitably sacrifices the hydrogen storage density. Therefore, achieving high-efficiency hydrogen release and high storage density remains a daunting task. Herein, we develop an innovative photothermally-activated suspended biphasic reaction strategy, which absorbs solar radiation and re-radiates infrared photons to induce photothermal evaporation and <i>in situ</i> dehydrogenation of liquid hydrogen carriers, fundamentally circumventing the employment of additives. Furthermore, by leveraging this phase transition-induced biphasic reaction design, the strategy improves the required reaction temperature and drastically lowers hydrogen transport resistance. Therefore, an impressive hydrogen evolution rate of 386 mmol g<sup>-1</sup> h<sup>-1</sup> is achieved from pure formic acid with an ultrahigh hydrogen storage density of 53 g L<sup>-1</sup>, representing a threefold improvement in rate compared to state-of-the-art strategies. Our approach introduces a fresh perspective for the dehydrogenation of liquid hydrogen carriers, encompassing formic acid, hydrazine hydrate, and so on, and concurrently guarantees exceptional hydrogen release capabilities and excellent hydrogen storage density.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia J Chang, Chuanshen Du, Dhanush Jamadgni, Alana Pauls, Andrew Martin, Le Wei, Thomas Ward, Meng Lu, Martin M Thuo
{"title":"Guided <i>ad infinitum</i> assembly of mixed-metal oxide arrays from a liquid metal.","authors":"Julia J Chang, Chuanshen Du, Dhanush Jamadgni, Alana Pauls, Andrew Martin, Le Wei, Thomas Ward, Meng Lu, Martin M Thuo","doi":"10.1039/d4mh01177e","DOIUrl":"https://doi.org/10.1039/d4mh01177e","url":null,"abstract":"<p><p>Bottom-up nano- to micro-fabrication is crucial in modern electronics and optics. Conventional multi-scale array fabrication techniques, however, are facing challenges in reconciling the contradiction between the pursuit of better device performance and lowering the fabrication cost and/or energy consumption. Here, we introduce a facile mixed-metal array fabrication method based on guided self-assembly of polymerizing organometallic adducts derived from the passivating oxides of a ternary liquid metal to create mixed metal wires. Driven by capillary action and evaporation-driven Marangoni convection, large-area, high-quality organometallic nano- to micro-wire arrays were fabricated. Calcination converts the organometallics into oxides (semiconductors) without compromising wire continuity or array periodicity. Exploiting capillary bridges on a preceding layer, hierarchical arrays were made. Similarly, exploiting the conformity of the liquid to the mold, arrays with complex geometries were made. Given the periodicity and high refractive index of these arrays, we observe guided mode resonance while their complex band structures enable fabrication of diodes or gates. This work demonstrates a simple, affordable approach to opto-electronics based on self-assembling arrays.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}