{"title":"Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies","authors":"Pankaj Saha, Weihao Zhao, Daniel-Ioan Stroe, Florin Iov, Stig Munk-Nielsen","doi":"10.3390/batteries9110527","DOIUrl":"https://doi.org/10.3390/batteries9110527","url":null,"abstract":"This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and accurate models. The system components consist of a 500 kW alkaline electrolyzer module integrated with a medium-voltage grid and three different commercially available ESSs based on Li-ion battery, Li-ion capacitor, and supercapacitor technology, respectively. The performance of these ESSs is extensively studied for three LVRT profiles, with a primary focus on the upcoming Danish grid code. In order to perform simulation studies, the system is implemented on the MATLAB®/Simulink®-PLECS® platform. The results demonstrate that all three energy storage technologies are capable of supporting the electrolyzer systems during low-voltage abnormalities in the distribution grid. The study also reveals that the supercapacitor-based technology seems to be more appropriate, from a techno-economic perspective, for fault ride-through (FRT) compliance.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135265884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Li Ion Transport in a Garnet-Type Solid Electrolyte via a Grain Boundary Design","authors":"Tao Sun, Xiaopeng Cheng, Tianci Cao, Mingming Wang, Jiao Tian, Tengfei Yan, Dechen Qin, Xianqiang Liu, Junxia Lu, Yuefei Zhang","doi":"10.3390/batteries9110526","DOIUrl":"https://doi.org/10.3390/batteries9110526","url":null,"abstract":"Garnet-type solid electrolytes have gained considerable attention owing to their exceptional ionic conductivity and broad electrochemical stability window, making them highly promising for solid-state batteries (SSBs). However, this polycrystalline ceramic electrolyte contains an abundance of grain boundaries (GBs). During the repetitive electroplating and stripping of Li ions, uncontrolled growth and spreading of lithium dendrites often occur at GBs, posing safety concerns and resulting in a shortened cycle life. Reducing the formation and growth of lithium dendrites can be achieved by rational grain boundary design. Herein, the garnet-type solid electrolyte LLZTO was firstly coated with Al2O3 using the atomic layer deposition (ALD) technique. Subsequently, an annealing treatment was employed to introduce Al2O3 into grain boundaries, effectively modifying them. Compared with the Li/LLZTO/Li cells, the Li/LLZTO@Al2O3-annealed/Li symmetric batteries exhibit a more stable cycling performance with an extended period of 200 h at 1 mA cm−2. After matching with the NMC811 cathode, the capacity retention rate of batteries can reach 96.8% after 50 cycles. The infusion of Al2O3 demonstrates its capability to react with LLZTO particles, creating an ion-conducting interfacial layer of Li-Al-O at the GBs. This interfacial layer effectively inhibits Li nucleation and filament growth within LLZTO, contributing to the suppression of lithium dendrites. Our work provides new suggestions for optimizing the synthesis of solid-state electrolytes, which can help facilitate the commercial application of solid-state batteries.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"4 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-24DOI: 10.3390/batteries9110525
Daniel A. Gribble, Vilas G. Pol
{"title":"Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder","authors":"Daniel A. Gribble, Vilas G. Pol","doi":"10.3390/batteries9110525","DOIUrl":"https://doi.org/10.3390/batteries9110525","url":null,"abstract":"The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-23DOI: 10.3390/batteries9100521
Reda Issa, Mohamed M. Badr, Omar Shalash, Ali A. Othman, Eman Hamdan, Mostafa S. Hamad, Ayman S. Abdel-Khalik, Shehab Ahmed, Sherif M. Imam
{"title":"A Data-Driven Digital Twin of Electric Vehicle Li-Ion Battery State-of-Charge Estimation Enabled by Driving Behavior Application Programming Interfaces","authors":"Reda Issa, Mohamed M. Badr, Omar Shalash, Ali A. Othman, Eman Hamdan, Mostafa S. Hamad, Ayman S. Abdel-Khalik, Shehab Ahmed, Sherif M. Imam","doi":"10.3390/batteries9100521","DOIUrl":"https://doi.org/10.3390/batteries9100521","url":null,"abstract":"Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT)-based digital twin (DT) through the Microsoft Azure services, incorporating components for data collection, time synchronization, processing, modeling, and decision visualization. Within this framework, the readily available measurements in the LIB module, including voltage, current, and operating temperature, are utilized, providing advanced information about the LIBs’ SOC and facilitating accurate determination of the electric vehicle (EV) range. This proposed data-driven SOC-estimation-based DT framework was developed with a supervised voting ensemble regression machine learning (ML) approach using the Azure ML service. To facilitate a more comprehensive understanding of historical driving cycles and ensure the SOC-estimation-based DT framework is accurate, this study used three application programming interfaces (APIs), namely Google Directions API, Google Elevation API, and OpenWeatherMap API, to collect the data and information necessary for analyzing and interpreting historical driving patterns, for the reference EV model, which closely emulates the dynamics of a real-world battery electric vehicle (BEV). Notably, the findings demonstrate that the proposed strategy achieves a normalized root mean square error (NRMSE) of 1.1446 and 0.02385 through simulation and experimental studies, respectively. The study’s results offer valuable insights that can inform further research on developing estimation and predictive maintenance systems for industrial applications.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-23DOI: 10.3390/batteries9100522
Alexander Reiter, Susanne Lehner, Oliver Bohlen, Dirk Uwe Sauer
{"title":"A Generic Approach to Simulating Temperature Distributions within Commercial Lithium-Ion Battery Systems","authors":"Alexander Reiter, Susanne Lehner, Oliver Bohlen, Dirk Uwe Sauer","doi":"10.3390/batteries9100522","DOIUrl":"https://doi.org/10.3390/batteries9100522","url":null,"abstract":"Determining both the average temperature and the underlying temperature distribution within a battery system is crucial for system design, control, and operation. Therefore, thermal battery system models, which allow for the calculation of these distributions, are required. In this work, a generic thermal equivalent circuit model for commercial battery modules with passive cooling is introduced. The model approach can be easily adopted to varying system designs and sizes and is accompanied by a corresponding low-effort characterization process. The validation of the model was performed on both synthetic and measured load profiles from stationary and marine applications. The results show that the model can represent both the average temperature and the occurring temperature spread (maximum to minimum temperature) with deviations below 1 K. In addition to the introduced full-scale model, further simplifying assumptions were tested in order to reduce the computational effort required by the model. By comparing the resulting simplified models with the original full-scale model, it can be shown that both reducing the number of simulated cells and assuming electrical homogeneity between the cells in the module offer a reduction in the computation time within one order of magnitude while still retaining a high model accuracy.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"47 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-23DOI: 10.3390/batteries9100520
Gerd Liebig, Ulf Kirstein, Stefan Geißendörfer, Omio Zahid, Frank Schuldt, Carsten Agert
{"title":"Correction: Liebig et al. The Impact of Environmental Factors on the Thermal Characteristic of a Lithium–ion Battery. Batteries 2020, 6, 3","authors":"Gerd Liebig, Ulf Kirstein, Stefan Geißendörfer, Omio Zahid, Frank Schuldt, Carsten Agert","doi":"10.3390/batteries9100520","DOIUrl":"https://doi.org/10.3390/batteries9100520","url":null,"abstract":"Mr [...]","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"44 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135405447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-23DOI: 10.3390/batteries9100523
Gerd Liebig, Gaurav Gupta, Ulf Kirstein, Frank Schuldt, Carsten Agert
{"title":"Correction: Liebig et al. Parameterization and Validation of an Electrochemical Thermal Model of a Lithium-Ion Battery. Batteries 2019, 5, 62","authors":"Gerd Liebig, Gaurav Gupta, Ulf Kirstein, Frank Schuldt, Carsten Agert","doi":"10.3390/batteries9100523","DOIUrl":"https://doi.org/10.3390/batteries9100523","url":null,"abstract":"Mr. O. Zahid was not included in the acknowledgement section with respect toillustrations created from geometric and thermal battery cell data he generated during his master’s thesis study independent of the original publication [...]","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"52 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135413798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-22DOI: 10.3390/batteries9100519
Nadezhda Kafadarova, Sotir Sotirov, Franz Herbst, Anna Stoynova, Stefan Rizanov
{"title":"A System for Determining the Surface Temperature of Cylindrical Lithium-Ion Batteries Using a Thermal Imaging Camera","authors":"Nadezhda Kafadarova, Sotir Sotirov, Franz Herbst, Anna Stoynova, Stefan Rizanov","doi":"10.3390/batteries9100519","DOIUrl":"https://doi.org/10.3390/batteries9100519","url":null,"abstract":"The topic of battery state-of-health monitoring via electrical and non-electrical testing procedures has become of increased interest for scientific researchers, due to the imposed goal of expanded industrial sustainability. Within the present study, we propose a novel approach for monitoring the temperature of batteries by means of infrared thermography. In order to improve the accuracy of the performed measurements and to overcome the limitations imposed by the cylindrical housing of the batteries, we have developed a unique method for monitoring and capturing the temperature of the battery over the entire housing. An experimental system was built, through which the battery performs a rotational movement relative to its axis, with this rotation motion being synchronized with the frame rate of the thermal camera. The resulting thermographic images are processed using specifically developed software. This software enables the segmentation of certain sections of the battery’s surface from a defined spatial perspective. These selected segments are subsequently utilized to generate a three-dimensional representation of the battery’s surface temperature’s distribution. In this way, errors in the obtained results which are caused by the viewing angle are avoided. Additionally, we developed and presented a method for the increasing of the resolution of captured thermograms.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"45 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135462023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-21DOI: 10.3390/batteries9100518
Geanina Apachitei, Rob Heymer, Michael Lain, Daniela Dogaru, Marc Hidalgo, James Marco, Mark Copley
{"title":"Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells","authors":"Geanina Apachitei, Rob Heymer, Michael Lain, Daniela Dogaru, Marc Hidalgo, James Marco, Mark Copley","doi":"10.3390/batteries9100518","DOIUrl":"https://doi.org/10.3390/batteries9100518","url":null,"abstract":"The size of a lithium iron phosphate (LFP) cathode mix was increased by a factor of thirty, and the capacity of the cells produced with it by a factor of three-hundred. As well as rate and cycling tests, the coatings were also characterised for adhesion and resistivity. The adhesion and total through-plane resistance were both dependent on the drying conditions during coating. The discharge capacities at high rates and the pulse resistances showed much less influence from the drying temperature. The mix formulation contained 97 wt% LFP, and was based on an earlier design of experiments (DoE) study, using relatively high active material contents. Overall, the mix exceeded the performance predicted by the modelling study.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"9 1-2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BatteriesPub Date : 2023-10-21DOI: 10.3390/batteries9100517
Suhyeon Lee, Dongho Lee
{"title":"A Novel Battery State of Charge Estimation Based on Voltage Relaxation Curve","authors":"Suhyeon Lee, Dongho Lee","doi":"10.3390/batteries9100517","DOIUrl":"https://doi.org/10.3390/batteries9100517","url":null,"abstract":"Lithium-ion batteries, known for their high efficiency and high energy output, have gained significant attention as energy storage devices. Monitoring the state of charge through battery management systems plays a crucial role in enhancing the safety and extending the lifespan of lithium-ion batteries. In this paper, we propose a state-of-charge estimation method to overcome the limitations of the traditional open-circuit voltage method and electrochemical impedance spectroscopy. We verified changes in the shape of the voltage relaxation curve based on battery impedance through simulations and analyzed the impact of individual impedance on the voltage relaxation curve using differential equations. Based on this relationship, we estimated the impedance from the battery’s voltage relaxation curve through curve fitting and subsequently estimated the state of charge using a pre-established lookup table. In addition, we introduced a partial curve-fitting method to reduce the estimation time compared to the existing open-circuit voltage method and confirmed the trade-off relationship between the estimation time and estimation error.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"119 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}