{"title":"聚多巴胺改性羧甲基纤维素作为高级聚硫捕集剂","authors":"Daniel A. Gribble, Vilas G. Pol","doi":"10.3390/batteries9110525","DOIUrl":null,"url":null,"abstract":"The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"6 3","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder\",\"authors\":\"Daniel A. Gribble, Vilas G. Pol\",\"doi\":\"10.3390/batteries9110525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.\",\"PeriodicalId\":8755,\"journal\":{\"name\":\"Batteries\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries9110525\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries9110525","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
寻找一种高能量密度的锂离子电池替代品引起了人们对锂硫电池(LSB)的极大兴趣。然而,由于聚硫化锂(LiPS)的有害穿梭,较差的循环寿命和库仑效率(CEs)阻碍了它的广泛应用。为了解决这一挑战,通过简单的一锅多巴胺(DOP)酰胺化反应,制备了一种整合多巴胺部分和聚多巴胺纳米颗粒的改性羧甲基纤维素钠(CMC)聚合物,以加强与LiPSs的非共价相互作用,并减轻穿梭效应。CMC-DOP粘合剂改善了电极的润湿性、附着力和电化学性能。与使用标准CMC粘合剂的lsb相比,CMC- dop 5:1 (CMC与多巴胺前体的重量比为5:1)将循环100时的比容量提高了38%,达到552 mAh g - 1, CE从96.8提高到98.9%。即使经过500次循环,lbs也表现出良好的稳定性。电化学阻抗谱(EIS)和能量色散谱(EDS)研究证实了CMC-DOP在阴极中限制lip的有效性。这种简单而有效的自然策略有望在不使用有害化学物质或增加多余体积的情况下提高lsdb的生存能力。
Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder
The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.