Materials Research Society symposia proceedings. Materials Research Society最新文献

筛选
英文 中文
Multifunctional composites as Solid-Polymer-Electrolytes (SPE) for Lithium Ion Battery (LIB) 多功能复合材料作为锂离子电池(LIB)固体聚合物电解质(SPE)
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-84
S. Mallardo
{"title":"Multifunctional composites as Solid-Polymer-Electrolytes (SPE) for Lithium Ion Battery (LIB)","authors":"S. Mallardo","doi":"10.21741/9781644902813-84","DOIUrl":"https://doi.org/10.21741/9781644902813-84","url":null,"abstract":"Abstract. Novel solid-polymer-electrolytes (SPE) have been formulated as key components of structural multifunctional materials to develop Lithium Ion Battery (LIB). To this aim, SPE blends based on polyethylene oxide (PEO), different molecular weights polyethylene glycole (PEG), PEG-modified sepiolite (SEP) and lithium triflate have been prepared by one pot melt mixing. The films were obtained by compression moulding following a method easily scalable to industrial level. The different films have been characterized by structural (FTIR-ATR), thermal (DSC, TGA), morphological (SEM) and mechanical (tensile tests) analysis. The different properties could be mainly addressed to the diverse PEG both amounts and molecular weight and to the specific physical interaction occurring between PEO, PEG sepiolite and lithium ions strongly influencing crystallinity, thermal stability and mechanical response. Thus, SPE2 sample evidenced the highest both crystallinity and mechanical stiffness and toughness, whereas SPE1 and SPE3 film showed the best compromise between molecular crystallinity and mechanical performances, mostly as strain at break are concerned. Finally, SPE4 film, including the highest amount of PEG showed a peculiar increasing of mechanical rigidity in opposition to molecular plasticization effect exploited by PEG. The many features of SPE systems requires special attention and further research when it comes time to design structural multifunctional materials for LIB based batteries of Type-III.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135370891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A finite-volume hybrid WENO/central-difference shock capturing approach with detailed state-to-state kinetics for high-enthalpy flows 高焓流的有限体积混合WENO/中心差分激波捕获方法,具有详细的状态到状态动力学
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-37
F. Bonelli
{"title":"A finite-volume hybrid WENO/central-difference shock capturing approach with detailed state-to-state kinetics for high-enthalpy flows","authors":"F. Bonelli","doi":"10.21741/9781644902813-37","DOIUrl":"https://doi.org/10.21741/9781644902813-37","url":null,"abstract":"Abstract. This work shows novel space discretization capabilities of an innovative fluid dynamics solver able to deal with thermochemical non-equilibrium by using a detailed state-to-state model. The implementation of a WENO hybrid scheme is verified and thermochemical non-equilibrium effects are investigated by considering a high temperature shock tube test case. The work represents a first step to enable the solver to perform LES and DNS simulations of turbulent hypersonic flows.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135370914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tests and simulations on 200N paraffin-oxygen hybrid rocket engines with different fuel grain lengths 200N不同燃料颗粒长度石蜡-氧混合火箭发动机的试验与仿真
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-143
S. Mungiguerra
{"title":"Tests and simulations on 200N paraffin-oxygen hybrid rocket engines with different fuel grain lengths","authors":"S. Mungiguerra","doi":"10.21741/9781644902813-143","DOIUrl":"https://doi.org/10.21741/9781644902813-143","url":null,"abstract":"Abstract. An experimental campaign, in the framework of the HYPROB-NEW hybrid rocket studies, was carried out on a 200N-thrust class hybrid rocket engine, using gaseous oxygen as the oxidizer and paraffin wax-based fuel, to investigate the effect of fuel grain length on motor performance and internal ballistics. Numerical analysis have been also performed to support the experimental findings. It was observed that, for given oxidizer flow rate, fuel grain length directly affects the characteristic velocity, because of its influence on residence time and mixing efficiency, so that the shortest grain configuration displayed the lowest performance. Moreover, CFD simulations provided an estimation of the regression rate profile along the grain length, providing a possible interpretation for the measured space-time-averaged fuel regression rate. Finally, a method for the rebuilding of the convective heat-transfer coefficient in the nozzle was used, based on a combination of numerical simulations and experimental acquisitions.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory optimization and multiple-sliding-surface terminal guidance in the lifting atmospheric reentry 升力大气再入弹道优化与多滑面末制导
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-134
E.M. Leonardi
{"title":"Trajectory optimization and multiple-sliding-surface terminal guidance in the lifting atmospheric reentry","authors":"E.M. Leonardi","doi":"10.21741/9781644902813-134","DOIUrl":"https://doi.org/10.21741/9781644902813-134","url":null,"abstract":"Abstract. In this paper the problem of guiding a vehicle from the entry interface to the ground is addressed. The Space Shuttle Orbiter is assumed as the reference vehicle and its aerodynamics data are interpolated in order to properly simulate its dynamics. The transatmospheric guidance is based on an open-loop optimal strategy which minimizes the total heat input absorbed by the vehicle while satisfying all the constraints. Instead, the terminal phase guidance is achieved through a multiple-sliding-surface technique, able to drive the vehicle toward a specified landing point, with desired heading angle and vertical velocity at touchdown, even in the presence of nonnominal initial conditions. The time derivatives of lift coefficient and bank angle are used as control inputs, while the sliding surfaces are defined so that these two inputs are involved simultaneously in the lateral and vertical guidance. The terminal guidance strategy is successfully tested through a Monte Carlo campaign, in the presence of stochastic winds and wide dispersions on the initial conditions at the Terminal Area Energy Management, in more critical scenarios with respect to the orbiter safety criteria.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135116193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can we use buckling to design adaptive composite wings? 我们能否利用屈曲来设计适应性复合材料机翼?
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-77
C. Bisagni
{"title":"Can we use buckling to design adaptive composite wings?","authors":"C. Bisagni","doi":"10.21741/9781644902813-77","DOIUrl":"https://doi.org/10.21741/9781644902813-77","url":null,"abstract":"Abstract. In aeronautics, buckling has long been considered as a structural phenomenon to be avoided, because characterized by large out-of-plane displacements and therefore by losing the ability to sustain the designed loads. Several recent studies show the possibility to allow composite stiffened panels of primary aeronautical components to work in the post-buckling field so to potentially reduce the structural weight. The present study aims to control buckling behavior of composite structural components for future adaptive wings using novel tailorable and effective mechanisms. Instead of the traditional design against buckling, the idea is to use the nonlinear post-buckling response to control stiffness changes which redistribute the load in the wing structure. Numerical studies are at first conducted on a composite plate and then implemented in a simplified thin-walled composite wing box, where stiffness changes is controlled using buckling.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135116714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous empowering with laser power transmission technologies for ISRU moon assets: CIRA approach ISRU月球资产的激光传输技术持续授权:CIRA方法
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-105
M.C. Noviello
{"title":"Continuous empowering with laser power transmission technologies for ISRU moon assets: CIRA approach","authors":"M.C. Noviello","doi":"10.21741/9781644902813-105","DOIUrl":"https://doi.org/10.21741/9781644902813-105","url":null,"abstract":"Abstract. Due to the potential possibility of changing the dynamics of the New Space Economy, In-Situ Resource Utilization (ISRU) is acquiring more and more importance within the Space Exploration scenario. Indeed, the closest space missions will return humans to the Moon, while planning the long-term stay. This aspect opens the way to the need for employment and processing of local resources, with the aim of reducing the dependence on Earth-based resources, also ensuring the financial sustainability of the space exploration programs. ISRU technologies will demand for energy values likely to be in the Megawatt range and, eventually, at Gigawatt levels, to be ensured in the harsh hazardous environmental conditions of the celestial bodies (e.g. Moon, Mars, Near Earth Asteroids). This work, performed by the CIRA TEES Laboratory, provides the CIRA approach to the feasibility study concerning the Laser Power Transmission (LPT) technologies for Moon assets empowering. The aim is to evaluate whether LPT can be a potentially efficient solution for continuous power delivery from an orbiting source device, considering long-distance wireless employments and severe environmental conditions, to drive ISRU Moon assets (habitats, rovers, local industrial plants, conveyance facilities, et cetera). For the purpose of this study, starting from the space mission identification, an increasing complexity multi-step approach was properly conceived by CIRA to design the dedicated LPT system responding to the evaluated mission requirements.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135116728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refinement of structural theories for composite shells through convolutional neural networks 基于卷积神经网络的复合材料壳体结构理论改进
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-31
M. Petrolo
{"title":"Refinement of structural theories for composite shells through convolutional neural networks","authors":"M. Petrolo","doi":"10.21741/9781644902813-31","DOIUrl":"https://doi.org/10.21741/9781644902813-31","url":null,"abstract":"Abstract. This study examines the use of Convolutional Neural Networks (CNN) to determine the optimal structural theories to adopt for the modeling of composite shells, to combine accuracy and computational efficiency. The use of the Axiomatic/Asymptotic Method (AAM) on higher-order theories (HOT) based on polynomial expansions can be cumbersome due to the amount of Finite Element Models (FEM) virtually available and the problem-dependency of a theory’s performance. Adopting the Carrera Unified Formulation (CUF) can mitigate this obstacle through its procedural and lean derivation of the required structural results. At the same time, the CNN can act as a surrogate model to guide the selection process. The network can inform on the convenience of a specific set of generalized variables after being trained with just a small percentage of the results typically required by the AAM. The CNN capabilities are compared to the AAM through the Best Theory Diagram (BTD) obtained using different selection criteria: errors over natural frequencies or failure indexes.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135117025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental application of pseudo-equivalent deterministic excitation method for the reproduction of a structural response to a turbulent boundary layer excitation 伪等效确定性激励法在紊流边界层激励下结构响应再现中的实验应用
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-157
G. Mazzeo
{"title":"Experimental application of pseudo-equivalent deterministic excitation method for the reproduction of a structural response to a turbulent boundary layer excitation","authors":"G. Mazzeo","doi":"10.21741/9781644902813-157","DOIUrl":"https://doi.org/10.21741/9781644902813-157","url":null,"abstract":"Abstract. The use of wind tunnels for studying the vibrational response of structures subjected to turbulent flows presents various challenges, such as background noise and complex setup requirements. This work introduces an alternative experimental method called X-PEDEm (eXperimental Pseudo-Equivalent Deterministic Excitation) that aims to reproduce an equivalent structural response to a Turbulent Boundary Layer (TBL) excitation without the need for a wind tunnel. X-PEDEm involves coupling the experimental acquisition of the structure's vibrational response with deterministic forces, such as an impulse force from a hammer, followed by post-processing. The method has been validated for different boundary conditions and flow speeds, offering versatility in recreating various types of TBL. While not an exact reproduction of turbulent flow-induced responses, X-PEDEm provides an optimal approximation with low time and resource requirements, making it easy to implement experimentally.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135117463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind tunnel flutter tests of a strut-braced high aspect ratio wing 支撑高展弦比机翼的风洞颤振试验
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-8
L. Marchetti
{"title":"Wind tunnel flutter tests of a strut-braced high aspect ratio wing","authors":"L. Marchetti","doi":"10.21741/9781644902813-8","DOIUrl":"https://doi.org/10.21741/9781644902813-8","url":null,"abstract":"Abstract. Increasing the wing aspect ratio is one way to improve aircraft aerodynamic efficiency. This reduces the induced drag term but, at the same time, produces an increment of the wing loads, hence an increase of the structural weight. One design solution to reduce the wing root bending moment, which is the main driver of the weight of the wing, is the addition of a strut. This work deals with the experimental identification of the flutter behavior of an ultra-high aspect ratio (19) strut-braced wing in a wind tunnel. The inherent non-linear behavior of such a structure that has two different effects on the wing when loaded in compression and in tension is coupled with large deformations due to its extreme flexibility. From here derives the extreme importance of experimental tests to understand how different parameters of such a design can impact its aeroelastic behavior.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135117687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamic analysis of a high-speed aircraft from hypersonic down to subsonic speeds 高速飞行器从高超声速降至亚音速的气动分析
Materials Research Society symposia proceedings. Materials Research Society Pub Date : 2023-11-01 DOI: 10.21741/9781644902813-50
G. Pezzella
{"title":"Aerodynamic analysis of a high-speed aircraft from hypersonic down to subsonic speeds","authors":"G. Pezzella","doi":"10.21741/9781644902813-50","DOIUrl":"https://doi.org/10.21741/9781644902813-50","url":null,"abstract":"Abstract. Unmanned flying-test bed aircraft are fundamental to experimentally prove and validate next generation high-speed technologies, such as aeroshape design, thermal protection material and strategy; flight mechanics and guidance-navigation and control. During the test, the aircraft will encounter realistic flight conditions to assess accuracy of new design choices and solutions. In this framework, the paper focuses on the longitudinal aerodynamic analysis of an experimental aircraft, with a spatuled body aeroshape, from subsonic up to hypersonic speeds. Computational flowfield analyses are carried out at several angles of attack ranging from 0 to 15 deg and for Mach numbers from 0.1 to 7. Results are detailed reported and discussed in the paper.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135117701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信