Wind tunnel flutter tests of a strut-braced high aspect ratio wing

L. Marchetti
{"title":"Wind tunnel flutter tests of a strut-braced high aspect ratio wing","authors":"L. Marchetti","doi":"10.21741/9781644902813-8","DOIUrl":null,"url":null,"abstract":"Abstract. Increasing the wing aspect ratio is one way to improve aircraft aerodynamic efficiency. This reduces the induced drag term but, at the same time, produces an increment of the wing loads, hence an increase of the structural weight. One design solution to reduce the wing root bending moment, which is the main driver of the weight of the wing, is the addition of a strut. This work deals with the experimental identification of the flutter behavior of an ultra-high aspect ratio (19) strut-braced wing in a wind tunnel. The inherent non-linear behavior of such a structure that has two different effects on the wing when loaded in compression and in tension is coupled with large deformations due to its extreme flexibility. From here derives the extreme importance of experimental tests to understand how different parameters of such a design can impact its aeroelastic behavior.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Increasing the wing aspect ratio is one way to improve aircraft aerodynamic efficiency. This reduces the induced drag term but, at the same time, produces an increment of the wing loads, hence an increase of the structural weight. One design solution to reduce the wing root bending moment, which is the main driver of the weight of the wing, is the addition of a strut. This work deals with the experimental identification of the flutter behavior of an ultra-high aspect ratio (19) strut-braced wing in a wind tunnel. The inherent non-linear behavior of such a structure that has two different effects on the wing when loaded in compression and in tension is coupled with large deformations due to its extreme flexibility. From here derives the extreme importance of experimental tests to understand how different parameters of such a design can impact its aeroelastic behavior.
支撑高展弦比机翼的风洞颤振试验
摘要提高机翼展弦比是提高飞机气动效率的途径之一。这减少了诱导阻力,但同时也增加了机翼载荷,从而增加了结构重量。翼根弯矩是机翼重量的主要驱动因素,减少这一弯矩的一种设计方案是增加支柱。本文研究了超高展弦比(19)支柱支撑机翼在风洞中颤振特性的实验识别。这种结构固有的非线性行为,在压缩和拉伸载荷下对机翼有两种不同的影响,由于其极端的灵活性,加上巨大的变形。从这里得出了实验测试的极端重要性,以了解这种设计的不同参数如何影响其气动弹性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信