{"title":"Proceedings of the Eight International Symposium on Reproduction in Domestic Ruminants. September 3-7, 2010. Anchorage, Alaska, USA.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"1-474"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30082034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endogenous retroviruses of sheep: a model system for understanding physiological adaptation to an evolving ruminant genome.","authors":"T E Spencer, S G Black, F Arnaud, M Palmarini","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and are remnants of ancient exogenous retroviral infections of the host germline transmitted vertically from generation to generation. Sheep betaretroviruses offer a unique model system to study the complex interaction between retroviruses and their host. The sheep genome contains 27 endogenous betaretroviruses (enJSRVs) related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV), the causative agent of a transmissible lung cancer in sheep. The enJSRVs can protect their host against JSRV infection by blocking early and late steps of the JSRV replication cycle. In the female reproductive tract, enJSRVs are specifically expressed in the uterine luminal and glandular epithelia as well as in the conceptus (embryo and associated extraembryonic membranes) trophectoderm and in utero loss-of-function experiments found the enJSRVs envelope (env) to be essential for conceptus elongation and trophectoderm growth and development. Collectively, available evidence in sheep and other mammals indicate that ERVs coevolved with their hosts for millions of years and were positively selected for biological roles in genome plasticity and evolution, protection of the host against infection of related pathogenic and exogenous retroviruses, and placental development.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"95-104"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30004554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing reproductive performance in domestic dairy water buffalo (Bubalus bubalis).","authors":"L Zicarelli","doi":"10.7313/upo9781907284991.034","DOIUrl":"https://doi.org/10.7313/upo9781907284991.034","url":null,"abstract":"<p><p>The purpose of the review is to describe the factors that affect fertility in domestic water buffalo (Bubalus bubalis) and the techniques that enable an improvement in reproductive performance. On Italian and Latin American farms where natural mating is practiced and bulls are always present in the herd, the inter-calving interval is approximately 400 days and the culling rate is lower than 15%. The buffalo has a tendency for seasonal reproductive activity. Reproduction is favoured when there is a decrease in day length. Ovarian activity stops if conception does not occur within 3 to 5 ovarian cycles. It is important, therefore, that appropriate management of the transition period is practiced, particularly with respect to the hygienic conditions of the uterus. In tropical countries located north of the equator, feed deficiencies and heat stress are considered the main factors that lead to poor fertility in the summer. In Pakistan, for example, the increase in body condition score during the autumn was associated with the commencement of the breeding season in buffaloes. Anoestrus is observed also in Italy, however, where the average daily temperature during the same period is 13.5 to 23.5 degrees C and feeding is constant throughout the year. The only common element between the two areas is the progressive increase in daylight hours between April and June and the day length greater than 12 hours up to September. In Italian herds that apply an out-of-season breeding strategy, an improvement in fertility (measured as the percentage of corpora lutea corresponding to subsequent pregnancy) is observed when water pools are present on the farm. This demonstrates that an improvement in environmental conditions reduces the incidence of embryonic mortality and/or abnormal cycles. To summarize, in the absence of serious nutritional problems, an improvement in environmental conditions increases fertility in buffalo.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"443-55"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30005512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The earliest stages of follicular development: follicle formation and activation.","authors":"J E Fortune, M Y Yang, W Muruvi","doi":"10.7313/upo9781907284991.018","DOIUrl":"https://doi.org/10.7313/upo9781907284991.018","url":null,"abstract":"<p><p>The formation of primordial follicles to establish a reservoir of resting follicles and the gradual depletion of that reservoir to provide a succession of growing follicles are key to female fertility, but little is known about the regulation of these early stages of follicular development. This review summarizes the efforts of our laboratory to elucidate these critical processes in cattle. Primordial follicles first appear in fetal ovaries around the end of the first trimester of pregnancy (Day 90), during a decline in fetal ovarian production of estradiol and progesterone. In ovarian cortical pieces from 90 to 120-day-old fetuses, follicles form in vitro and estradiol or progesterone inhibits follicle formation, whereas the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT) does not. Newly formed bovine follicles are not capable of activating within 2 days in vitro, but they can acquire the capacity to activate during a longer culture; estradiol and progesterone inhibit the acquisition of their capacity to activate. When primordial follicles first form in cattle, their oocytes are not yet in meiotic arrest and acquisition of competence to activate is correlated with their progression to meiotic arrest at the diplotene stage of first prophase. After they acquire the competence to activate, bovine primordial follicles can be stimulated to activate in vitro by insulin or kit ligand, whereas anti-Mullerian hormone (AMH) is inhibitory. Although few follicles progress to the secondary stage in vitro, addition of testosterone or vascular endothelial growth factor (VEGF) dramatically increased the incidence of that transition. Regulation of the earliest stages of follicular development is complex and far from understood; better understanding could lead to new interventions to enhance fertility.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"203-16"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316466/pdf/nihms846028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30005660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular markers of sperm quality.","authors":"P Sutovsky, K Lovercamp","doi":"10.7313/upo9781907284991.021","DOIUrl":"https://doi.org/10.7313/upo9781907284991.021","url":null,"abstract":"<p><p>Light microscopic semen evaluation provides useful information about a given sperm sample, but due to its subjective nature has limited prognostic value for the reproductive performance of males or the outcome of assisted fertilization. Cryptic sperm abnormalities (occurring at the molecular level) are not easily detectable by light microscopy, but can be revealed by an array of biomarkers. The latter include fluorescent markers of acrosomal status, fluorochromes detecting altered sperm chromatin or DNA integrity, vital dyes revealing sperm mitochondrial activity, probes detecting apoptotic events, and antibodies detecting proteins that are either up- or down-regulated in defective spermatozoa. Many of the above biomarkers are best tested by flow cytometry, permitting rapid, automated, high throughput, objective measurement of the relative abundance of these biomarkers in semen. This review summarizes a strategy for the identification of novel male fertility/sperm quality biomarkers based on proteomic, biochemical and immunocytochemical analyses of defective spermatozoa. This approach identifies proteins or ligands uniquely associated with defective spermatozoa, regardless of whether they carry gross morphological defects or subtle, but critical hidden defects (e.g. DNA strand breaks) not detected with conventional, light microscopic analysis. Such markers, including ubiquitin, sperm thioredoxin SPTRX3/TXNDC8, 15LOX, and Lewis(y)-terminated N-glycans, are associated with poor semen quality and reduced fertility, warranting a designation of \"negative\" markers of fertility. The significance of sperm cytoplasmic droplet, a structure that accumulates several of the discussed biomarker proteins, is also discussed with regard to sperm quality and fertility.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"247-56"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30005663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Putative role of cocaine- and amphetamine-regulated transcript (CARTPT) in dominant follicle selection in cattle.","authors":"G. Smith, A. Sen, J. Folger, J. Ireland","doi":"10.5661/RDR-VII-105","DOIUrl":"https://doi.org/10.5661/RDR-VII-105","url":null,"abstract":"The mechanisms regulating development of a single (dominant) follicle capable of ovulation during each follicular wave in cattle and atresia of remaining follicles (dominant follicle selection) are not well understood. FSH and IGF1 are known regulators of follicle growth and granulosa cell estradiol production during follicular waves. Recent evidence indicates cocaine and amphetamine regulated transcript (CARTPT), with intraovarian expression only in single-ovulating species, is a novel regulator of follicular development. The mature CARTPT peptide (CART) is a potent negative regulator of FSH and IGF1 action on granulosa cells in vitro and can inhibit follicular estradiol production in vivo. Follicular fluid CART concentrations in healthy follicles decrease after dominant follicle selection and CARTPT mRNA is lower in healthy versus atretic follicles collected prior to and early after initiation of follicle dominance, suggestive of a regulatory role in the selection process. The inhibitory actions of CART on FSH signaling and estradiol production are dependent on the G(o/i)-subclass of inhibitory G proteins and linked to multiple components of the FSH signal transduction pathway resulting in reduced CYP19A1 mRNA and estradiol production. Evidence to date supports a potential important functional role for CART in regulation of dominant follicle selection and the species-specific ovulatory quota in monotocous species.","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 1","pages":"105-17"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70827567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spermatogonial stem cell biology in the bull: development of isolation, culture, and transplantation methodologies and their potential impacts on cattle production.","authors":"J. Oatley","doi":"10.5661/RDR-VII-133","DOIUrl":"https://doi.org/10.5661/RDR-VII-133","url":null,"abstract":"Widespread adoption of artificial insemination as a breeding practice has allowed for expanded use of desirable genetics from specific sires and greatly influenced production traits in dairy cattle populations worldwide. In fact, the average dairy cow in the US in 2009 produced 4.5 times more milk than in 1940 when commercialization of artificial insemination began. While many factors have contributed to this rapid increase in levels of milk production, genetic gain through expanded utilization of germlines from specific sires has been a major contribution. In comparison, use of artificial insemination in beef cattle populations has been limited due to challenges with implementing intensive management strategies required for success. Thus, there is need for alternative reproductive tools to expand use of desirable male genetics in the beef cattle industry. The process of sperm production, termed spermatogenesis, is supported by a tissue-specific stem cell population referred to as spermatogonial stem cells (SSCs). These unique cells have the capacity for infinite self-renewal and long-term regeneration of spermatogenesis following transplantation. In rodents, methods for isolating, culturing, and transplanting SSCs have been devised. For beef cattle, transplanting SSCs isolated from a donor male into the testes of recipient males in which donor-derived spermatogenesis occurs and offspring with donor genetics are produced from natural breeding has great potential as an alternative to artificial insemination. This potential reproductive strategy would allow for expansive use of genetics from desirable sires that overcomes the logistical challenges of artificial insemination. Translation of the methods devised for rodents to cattle is at the forefront of development. Devising means for isolating an SSC-enriched cell fraction from donor testes and identifying conditions that support long-term maintenance and proliferation of bovine SSCs in vitro are two tools that would greatly accelerate the pace at which transplantation will become a commercially viable option for cattle industries. Recent studies showed that expression of THY1 by SSCs is a conserved phenotype between rodents and cattle, and selection of the THY1 + fraction from donor testes can be used for isolating an SSC-enriched germ cell population. In addition, the conditions devised for expanding the number of rodent SSCs in vitro continues to serve as the basis for developing conditions that support bovine SSCs. With these tools in hand major advances in developing implementable reproductive tools with SSCs for commercial cattle production will be made in the coming decade.","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 1","pages":"133-43"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70827631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bauersachs, H. Blum, S. Krebs, T. Fröhlich, G. Arnold, E. Wolf
{"title":"Creating new knowledge for ruminant reproduction from rapidly expanding and evolving scientific databases.","authors":"S. Bauersachs, H. Blum, S. Krebs, T. Fröhlich, G. Arnold, E. Wolf","doi":"10.5661/RDR-VII-29","DOIUrl":"https://doi.org/10.5661/RDR-VII-29","url":null,"abstract":"Declining fertility is a major problem for the dairy industry. Recent developments of Omics-technologies facilitate a comprehensive analysis of molecular patters in gametes, embryos and tissues of the reproductive tract which may help to identify the reasons for impaired fertility. Large Omics-datasets require appropriate bioinformatics analysis in the context of rapidly expanding and evolving scientific databases. This overview summarizes the current status of ruminant genome projects, describes currently existing resources for ruminant genomics, transcriptomics and proteomics as well as databases and tools for the interpretation and exploitation of transcriptomics and proteomics datasets. Gene set enrichment analysis (GSEA) and transcription factor binding site (TFBS) analyses are strategies for the identification of regulatory genes. In general, the comprehensive analysis of molecular traits by Omics-technologies can enhance the interpretation of genome-wide association studies, providing insights into the biological pathways linking genotype and phenotype, and their modulation by endogenous and environmental factors.","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 1","pages":"29-40"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70827691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of kisspeptin and gonadotropin inhibitory hormone (GnIH) in the seasonality of reproduction in sheep.","authors":"I J Clarke, J T Smith","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sheep are seasonal breeders and reproductive status is controlled by photoperiod. Recent recognition of the significant role for kisspeptin and gonadotropin inhibitory hormone (GnIH) in the regulation of gonadotropin releasing hormone (GnRH) cells has provided a new perspective in the seasonal regulation of reproductive activity. Virtually all kisspeptin cells express estrogen receptors and kisspeptin is a potent stimulator of GnRH secretion. Thus, kisspeptin cells provide a conduit by which changes in estrogen feedback effects may be exerted upon GnRH cells. Changes in the activity of kisspeptin cells with season indicate a major role in the seasonal changes in reproductive activity in the ewe. GnIH is an inhibitor of reproductive function and there is mounting evidence that changing activity of this system is also an important determinant of reproductive status. Reciprocal changes in kisspeptin and GnIH activity explain seasonal changes in the function of GnRH cells.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"159-69"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30004559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A C O Evans, F Mossa, T Fair, P Lonergan, S T Butler, A E Zielak-Steciwko, G W Smith, F Jimenez-Krassel, J K Folger, J L H Ireland, J J Ireland
{"title":"Causes and consequences of the variation in the number of ovarian follicles in cattle.","authors":"A C O Evans, F Mossa, T Fair, P Lonergan, S T Butler, A E Zielak-Steciwko, G W Smith, F Jimenez-Krassel, J K Folger, J L H Ireland, J J Ireland","doi":"10.7313/upo9781907284991.032","DOIUrl":"https://doi.org/10.7313/upo9781907284991.032","url":null,"abstract":"<p><p>In cattle we have noted that the antral follicle count (AFC, follicles > or = 3 mm in diameter) varies greatly among animals (from 5 to 50), is repeatable within animals, and is highly correlated with the total number of healthy follicles in ovaries. Also, animals with low AFC have higher serum concentrations of FSH and LH, but lower concentrations of Anti-Mullerian Hormone, progesterone and androgens than animals with high AFC. We have investigated the effect of maternal environment during gestation on their offspring AFC by restricting maternal nutrition to 60% of maintenance requirements (compared with 100% in controls) during the first third of gestation. Calves born to nutritionally restricted mothers had 60% lower AFC compared with calves born to mothers fed control diets. In other studies we have evidence to indicate that fertility may be compromised in animals with low AFC due to effects on oocytes, progesterone and the endometrium compared with animals with high AFC. To examine this directly we assessed AFC in post-partum dairy cows and found that cows with a high AFC had higher pregnancy rates, shorter calving to conception intervals and received fewer services during the breeding season compared with cows with a low AFC. In addition, the high variation in follicle numbers in adults may not only be reflective of reproductive disorders and suboptimal fertility, but there is evidence to indicate that it may be associated with alterations in the function of other non-reproductive systems (e.g. cardiovascular) that may have profound effects on the animal's health and welfare.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"421-9"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30005510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}