Basic Research in Cardiology最新文献

筛选
英文 中文
Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. 与免疫肿瘤治疗相关的免疫心血管不良事件:癌症患者面临的一个被低估的威胁。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-09-03 DOI: 10.1007/s00395-024-01077-7
Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella
{"title":"Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients.","authors":"Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella","doi":"10.1007/s00395-024-01077-7","DOIUrl":"10.1007/s00395-024-01077-7","url":null,"abstract":"<p><p>Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. 自愿运动通过 STAT3 对乳腺癌诱发的心脏损伤起到保护作用
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-19 DOI: 10.1007/s00395-024-01076-8
Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang
{"title":"Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3.","authors":"Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang","doi":"10.1007/s00395-024-01076-8","DOIUrl":"https://doi.org/10.1007/s00395-024-01076-8","url":null,"abstract":"<p><p>Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. 气体递质和惰性气体在心脏保护中的作用:揭示未来治疗策略的分子途径。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI: 10.1007/s00395-024-01061-1
Pasquale Pagliaro, Nina C Weber, Saveria Femminò, Giuseppe Alloatti, Claudia Penna
{"title":"Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies.","authors":"Pasquale Pagliaro, Nina C Weber, Saveria Femminò, Giuseppe Alloatti, Claudia Penna","doi":"10.1007/s00395-024-01061-1","DOIUrl":"10.1007/s00395-024-01061-1","url":null,"abstract":"<p><p>Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"509-544"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise training decreases lactylation and prevents myocardial ischemia-reperfusion injury by inhibiting YTHDF2. 运动训练通过抑制 YTHDF2 减少泌乳,并预防心肌缺血再灌注损伤。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-04-02 DOI: 10.1007/s00395-024-01044-2
Gui-E Xu, Pujiao Yu, Yuxue Hu, Wensi Wan, Keting Shen, Xinxin Cui, Jiaqi Wang, Tianhui Wang, Caiyue Cui, Emeli Chatterjee, Guoping Li, Dragos Cretoiu, Joost P G Sluijter, Jiahong Xu, Lijun Wang, Junjie Xiao
{"title":"Exercise training decreases lactylation and prevents myocardial ischemia-reperfusion injury by inhibiting YTHDF2.","authors":"Gui-E Xu, Pujiao Yu, Yuxue Hu, Wensi Wan, Keting Shen, Xinxin Cui, Jiaqi Wang, Tianhui Wang, Caiyue Cui, Emeli Chatterjee, Guoping Li, Dragos Cretoiu, Joost P G Sluijter, Jiahong Xu, Lijun Wang, Junjie Xiao","doi":"10.1007/s00395-024-01044-2","DOIUrl":"10.1007/s00395-024-01044-2","url":null,"abstract":"<p><p>Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N<sup>6</sup>-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m<sup>6</sup>A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m<sup>6</sup>A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"651-671"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardioprotection in cardiovascular surgery. 心血管手术中的心脏保护。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1007/s00395-024-01062-0
Sharif A Sabe, Dwight D Harris, Mark Broadwin, Frank W Sellke
{"title":"Cardioprotection in cardiovascular surgery.","authors":"Sharif A Sabe, Dwight D Harris, Mark Broadwin, Frank W Sellke","doi":"10.1007/s00395-024-01062-0","DOIUrl":"10.1007/s00395-024-01062-0","url":null,"abstract":"<p><p>Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"545-568"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. 线粒体钙在心脏缺血/再灌注损伤和心脏保护中的作用。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-06-19 DOI: 10.1007/s00395-024-01060-2
Edoardo Bertero, Tudor-Alexandru Popoiu, Christoph Maack
{"title":"Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection.","authors":"Edoardo Bertero, Tudor-Alexandru Popoiu, Christoph Maack","doi":"10.1007/s00395-024-01060-2","DOIUrl":"10.1007/s00395-024-01060-2","url":null,"abstract":"<p><p>Mitochondrial calcium (Ca<sup>2+</sup>) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca<sup>2+</sup> levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca<sup>2+</sup> in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca<sup>2+</sup> handling by regulating the activity of the main Ca<sup>2+</sup> influx and efflux pathways, i.e., the mitochondrial Ca<sup>2+</sup> uniporter and sodium/Ca<sup>2+</sup> exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"569-585"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone marrow cells contribute to seven different endothelial cell populations in the heart. 骨髓细胞在心脏中形成了七种不同的内皮细胞群。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.1007/s00395-024-01065-x
Parisa Shabani, Vahagn Ohanyan, Ammar Alghadeer, Daniel Gavazzi, Feng Dong, Liya Yin, Christopher Kolz, Lindsay Shockling, Molly Enrick, Ping Zhang, Xin Shi, William Chilian
{"title":"Bone marrow cells contribute to seven different endothelial cell populations in the heart.","authors":"Parisa Shabani, Vahagn Ohanyan, Ammar Alghadeer, Daniel Gavazzi, Feng Dong, Liya Yin, Christopher Kolz, Lindsay Shockling, Molly Enrick, Ping Zhang, Xin Shi, William Chilian","doi":"10.1007/s00395-024-01065-x","DOIUrl":"10.1007/s00395-024-01065-x","url":null,"abstract":"<p><p>Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP<sup>+</sup> BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"699-715"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury. 在再灌注时给予丙二酸盐,可通过减少缺血/再灌注损伤预防心肌梗死后心力衰竭。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-06-12 DOI: 10.1007/s00395-024-01063-z
Jiro Abe, Ana Vujic, Hiran A Prag, Michael P Murphy, Thomas Krieg
{"title":"Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury.","authors":"Jiro Abe, Ana Vujic, Hiran A Prag, Michael P Murphy, Thomas Krieg","doi":"10.1007/s00395-024-01063-z","DOIUrl":"10.1007/s00395-024-01063-z","url":null,"abstract":"<p><p>The mitochondrial metabolite succinate is a key driver of ischemia/reperfusion injury (IRI). Targeting succinate metabolism by inhibiting succinate dehydrogenase (SDH) upon reperfusion using malonate is an effective therapeutic strategy to achieve cardioprotection in the short term (< 24 h reperfusion) in mouse and pig in vivo myocardial infarction (MI) models. We aimed to assess whether inhibiting IRI with malonate given upon reperfusion could prevent post-MI heart failure (HF) assessed after 28 days. Male C57BL/6 J mice were subjected to 30 min left anterior coronary artery (LAD) occlusion, before reperfusion for 28 days. Malonate or without-malonate control was infused as a single dose upon reperfusion. Cardiac function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Reperfusion without malonate significantly reduced ejection fraction (~ 47%), fractional shortening (~ 23%) and elevated collagen deposition 28 days post-MI. Malonate, administered as a single infusion (16 mg/kg/min for 10 min) upon reperfusion, gave a significant cardioprotective effect, with ejection fraction (~ 60%) and fractional shortening (~ 30%) preserved and less collagen deposition. Using an acidified malonate formulation, to enhance its uptake into cardiomyocytes via the monocarboxylate transporter 1, both 1.6 and 16 mg/kg/min 10 min infusion led to robust long-term cardioprotection with preserved ejection fraction (> 60%) and fractional shortening (~ 30%), as well as significantly less collagen deposition than control hearts. Malonate administration upon reperfusion prevents post-MI HF. Acidification of malonate enables lower doses of malonate to also achieve long-term cardioprotection post-MI. Therefore, the administration of acidified malonate upon reperfusion is a promising therapeutic strategy to prevent IRI and post-MI HF.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"691-697"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connexin 43 modulates reverse electron transfer in cardiac mitochondria from inducible knock-out Cx43Cre-ER(T)/fl mice by altering the coenzyme Q pool. 连接蛋白43通过改变辅酶Q池调节诱导性基因敲除Cx43Cre-ER(T)/fl小鼠心脏线粒体中的反向电子传递。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-08-01 Epub Date: 2024-05-09 DOI: 10.1007/s00395-024-01052-2
Marta Consegal, Elisabet Miró-Casas, Ignasi Barba, Marisol Ruiz-Meana, Javier Inserte, Begoña Benito, Cristina Rodríguez, Freddy G Ganse, Laura Rubio-Unguetti, Carmen Llorens-Cebrià, Ignacio Ferreira-González, Antonio Rodríguez-Sinovas
{"title":"Connexin 43 modulates reverse electron transfer in cardiac mitochondria from inducible knock-out Cx43<sup>Cre-ER(T)/fl</sup> mice by altering the coenzyme Q pool.","authors":"Marta Consegal, Elisabet Miró-Casas, Ignasi Barba, Marisol Ruiz-Meana, Javier Inserte, Begoña Benito, Cristina Rodríguez, Freddy G Ganse, Laura Rubio-Unguetti, Carmen Llorens-Cebrià, Ignacio Ferreira-González, Antonio Rodríguez-Sinovas","doi":"10.1007/s00395-024-01052-2","DOIUrl":"10.1007/s00395-024-01052-2","url":null,"abstract":"<p><p>Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43<sup>Cre-ER(T)/fl</sup> mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43<sup>fl/fl</sup> mice and Cx43<sup>Cre-ER(T)/fl</sup> knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43<sup>Cre-ER(T)/fl</sup> mice treated with 4OHT had a smaller infarct size after IR compared to Cx43<sup>fl/fl</sup>, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"673-689"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. 免疫检查点抑制剂疗法心脏毒性的临床前模型。
IF 7.5 1区 医学
Basic Research in Cardiology Pub Date : 2024-07-22 DOI: 10.1007/s00395-024-01070-0
Florian Buehning, Tobias Lerchner, Julia Vogel, Ulrike B Hendgen-Cotta, Matthias Totzeck, Tienush Rassaf, Lars Michel
{"title":"Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy.","authors":"Florian Buehning, Tobias Lerchner, Julia Vogel, Ulrike B Hendgen-Cotta, Matthias Totzeck, Tienush Rassaf, Lars Michel","doi":"10.1007/s00395-024-01070-0","DOIUrl":"https://doi.org/10.1007/s00395-024-01070-0","url":null,"abstract":"<p><p>Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8<sup>+</sup> T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信