静脉注射和口服合成 RNA 药物 TY1 可逆转小鼠射血分数保留型心力衰竭

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Kazutaka Miyamoto, Xaviar M. Jones, Shukuro Yamaguchi, Alessandra Ciullo, Chang Li, Joshua Godoy Coto, Kara Tsi, Jessica Anderson, Ashley Morris, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim
{"title":"静脉注射和口服合成 RNA 药物 TY1 可逆转小鼠射血分数保留型心力衰竭","authors":"Kazutaka Miyamoto, Xaviar M. Jones, Shukuro Yamaguchi, Alessandra Ciullo, Chang Li, Joshua Godoy Coto, Kara Tsi, Jessica Anderson, Ashley Morris, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim","doi":"10.1007/s00395-024-01095-5","DOIUrl":null,"url":null,"abstract":"<p>TY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss. The effects of TY1 were specific, insofar as they were not reproduced by a control RNA of the same nucleotide content but in scrambled order. TY1 consistently suppressed myocardial stress-induced MAP kinase signaling, as well as downstream inflammatory, fibrotic, and hypertrophic gene pathways in heart tissue. TY1 not only prevented but actually reversed key pathological processes underlying HFpEF, with no evidence of toxicity. Most noteworthy from a practical perspective, the effects of intravenous TY1 were reproduced by feeding HFpEF mice an oral micellar formulation of TY1. As the prototype for a novel class of ncRNA drugs which target cell stress, TY1 exhibits exceptional disease-modifying bioactivity in HFpEF.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"1 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intravenous and oral administration of the synthetic RNA drug, TY1, reverses heart failure with preserved ejection fraction in mice\",\"authors\":\"Kazutaka Miyamoto, Xaviar M. Jones, Shukuro Yamaguchi, Alessandra Ciullo, Chang Li, Joshua Godoy Coto, Kara Tsi, Jessica Anderson, Ashley Morris, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim\",\"doi\":\"10.1007/s00395-024-01095-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss. The effects of TY1 were specific, insofar as they were not reproduced by a control RNA of the same nucleotide content but in scrambled order. TY1 consistently suppressed myocardial stress-induced MAP kinase signaling, as well as downstream inflammatory, fibrotic, and hypertrophic gene pathways in heart tissue. TY1 not only prevented but actually reversed key pathological processes underlying HFpEF, with no evidence of toxicity. Most noteworthy from a practical perspective, the effects of intravenous TY1 were reproduced by feeding HFpEF mice an oral micellar formulation of TY1. As the prototype for a novel class of ncRNA drugs which target cell stress, TY1 exhibits exceptional disease-modifying bioactivity in HFpEF.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-024-01095-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01095-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

TY1是一种合成的非编码RNA (ncRNA),受细胞外囊泡(ev)中丰富的小Y RNA的启发,可以降低心肌梗死时cGAS/STING的激活,从而减轻炎症。基于保留射血分数心力衰竭(HFpEF)是一种全身性炎症性疾病的概念,我们在HFpEF小鼠模型中测试了TY1。经转染试剂包装的TY1静脉注射可逆转两击型肥胖高血压小鼠HFpEF的心脏和全身表现,但不引起体重减轻。TY1的作用是特异性的,因为它们不能被具有相同核苷酸含量的对照RNA复制,而是以混乱的顺序复制。TY1持续抑制心肌应激诱导的MAP激酶信号,以及心脏组织中下游的炎症、纤维化和肥厚基因通路。TY1不仅阻止,而且实际上逆转了HFpEF的关键病理过程,没有毒性的证据。最值得注意的是,从实践的角度来看,静脉注射TY1的效果可以通过给HFpEF小鼠喂食口服TY1胶束制剂来重现。作为一类新型靶向细胞应激的ncRNA药物的原型,TY1在HFpEF中表现出特殊的疾病修饰生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intravenous and oral administration of the synthetic RNA drug, TY1, reverses heart failure with preserved ejection fraction in mice

TY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss. The effects of TY1 were specific, insofar as they were not reproduced by a control RNA of the same nucleotide content but in scrambled order. TY1 consistently suppressed myocardial stress-induced MAP kinase signaling, as well as downstream inflammatory, fibrotic, and hypertrophic gene pathways in heart tissue. TY1 not only prevented but actually reversed key pathological processes underlying HFpEF, with no evidence of toxicity. Most noteworthy from a practical perspective, the effects of intravenous TY1 were reproduced by feeding HFpEF mice an oral micellar formulation of TY1. As the prototype for a novel class of ncRNA drugs which target cell stress, TY1 exhibits exceptional disease-modifying bioactivity in HFpEF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信