AutoimmunityPub Date : 2024-12-01Epub Date: 2024-07-08DOI: 10.1080/08916934.2024.2370536
Lauren K Heine, Lichchavi D Rajasinghe, James G Wagner, Ryan P Lewandowski, Quan-Zhen Li, Alexa L Richardson, Ashleigh N Tindle, Jenan J Shareef, Jack R Harkema, James J Pestka
{"title":"Subchronic intranasal lipopolysaccharide exposure induces pulmonary autoimmunity and glomerulonephritis in NZBWF1 mice.","authors":"Lauren K Heine, Lichchavi D Rajasinghe, James G Wagner, Ryan P Lewandowski, Quan-Zhen Li, Alexa L Richardson, Ashleigh N Tindle, Jenan J Shareef, Jack R Harkema, James J Pestka","doi":"10.1080/08916934.2024.2370536","DOIUrl":"10.1080/08916934.2024.2370536","url":null,"abstract":"<p><p>Lupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice. Briefly, mice were IN-instilled with vehicle or E. coli LPS (0.8 μg/g) twice weekly for 5 wk, followed by necropsy. For systemic comparison, additional cohorts of mice were injected with LPS intraperitoneally (IP) using identical doses/timing. Lungs were assessed for inflammatory and autoimmune responses and then related to systemic autoimmunity and glomerulonephritis. IN/LPS exposure induced in the lung: i) leukocyte infiltration, ii)mRNA signatures for cytokines, chemokines, IFN-regulated, and cell death-related genes, iii) ectopic lymphoid tissue formation, and iv)diverse IgM and IgG autoantibodies (AAbs). Pulmonary effects coincided with enlarged spleens, elevated plasma IgG AAbs, and inflamed IgG-containing kidney glomeruli. In contrast, IP/LPS treatment induced systemic autoimmunity and glomerulonephritis without pulmonary manifestations. Taken together, these preclinical findings suggest the lung could serve as a critical nexus for triggering autoimmunity by respirable LPS in genetically predisposed individuals.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-06-08DOI: 10.1080/08916934.2024.2361745
Eroboghene E Ubogu
{"title":"Animal models of immune-mediated demyelinating polyneuropathies.","authors":"Eroboghene E Ubogu","doi":"10.1080/08916934.2024.2361745","DOIUrl":"10.1080/08916934.2024.2361745","url":null,"abstract":"<p><p>Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-07-01DOI: 10.1080/08916934.2024.2364686
Wenjuan Xu, Yuanyuan Zhang, Lijuan Li, Liyan Pan, Li Lu, Shenshen Zhi, Wei Li
{"title":"Osteocyte-derived exosomes regulate the DLX2/wnt pathway to alleviate osteoarthritis by mediating cartilage repair.","authors":"Wenjuan Xu, Yuanyuan Zhang, Lijuan Li, Liyan Pan, Li Lu, Shenshen Zhi, Wei Li","doi":"10.1080/08916934.2024.2364686","DOIUrl":"10.1080/08916934.2024.2364686","url":null,"abstract":"<p><strong>Background: </strong>Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA.</p><p><strong>Objective: </strong>This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms.</p><p><strong>Methods: </strong>An injury cell model was established by treating chondrocytes with IL-1β. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 <i>in vivo</i>.</p><p><strong>Results: </strong>Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2.</p><p><strong>Conclusion: </strong>Osteocyte-derived exosomal DLX2 alleviated IL-1β-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-02-07DOI: 10.1080/08916934.2024.2312927
Yeke Wu, Bin Li, Disi Deng, Hongling Zhou, Min Liu, Huangping Ai, Yilin Xin, Weihan Hua, Lixing Zhao, Li Li
{"title":"Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury.","authors":"Yeke Wu, Bin Li, Disi Deng, Hongling Zhou, Min Liu, Huangping Ai, Yilin Xin, Weihan Hua, Lixing Zhao, Li Li","doi":"10.1080/08916934.2024.2312927","DOIUrl":"10.1080/08916934.2024.2312927","url":null,"abstract":"<p><p>MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury <i>in vitro</i>. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-03-28DOI: 10.1080/08916934.2024.2332340
Yang Xue, Pengqi Yin, Hongping Chen, Guozhong Li, Di Zhong
{"title":"Novel peripheral blood mononuclear cell mRNA signature for IFN-beta therapy responsiveness prediction in multiple sclerosis.","authors":"Yang Xue, Pengqi Yin, Hongping Chen, Guozhong Li, Di Zhong","doi":"10.1080/08916934.2024.2332340","DOIUrl":"10.1080/08916934.2024.2332340","url":null,"abstract":"<p><p>Interferon-beta (IFN-<math><mrow><mi>β</mi></mrow></math>) is one of the classical drugs for immunomodulatory therapy in relapsing-remitting multiple sclerosis (RRMS) patients, but the drug responsiveness of different patients varies. Currently, there is no valid model to predict IFN-<math><mrow><mi>β</mi></mrow></math> responsiveness. This research attempted to develop an IFN-<math><mrow><mi>β</mi></mrow></math> responsiveness prediction model based on mRNA expression in RRMS patient peripheral blood mononuclear cells. Peripheral blood mononuclear cell mRNA expression datasets including 50 RRMS patients receiving IFN-<math><mrow><mi>β</mi></mrow></math> treatment were obtained from GEO. Among the datasets, 24 cases from GSE24427 were included in a training set, and 18 and 9 cases from GSE19285 and GSE33464, respectively, were adopted as two independent test sets. In the training set, blood samples were collected immediately before first, second, month 1, 12, and 24 IFN-<math><mrow><mi>β</mi></mrow></math> injection, and the mRNA expression data at four time points, namely, two days, one month, one year and two years after the onset of IFN-<math><mrow><mi>β</mi></mrow></math> treatment, were compared with pre-treatment data to identify IFN-stimulated genes (ISGs). The ISGs at the one-month time point were used to construct the drug responsiveness prediction model. Next, the drug responsiveness model was verified in the two independent test sets to examine the performance of the model in predicting drug responsiveness. Finally, we used CIBERSORTx to estimate the content of cell subtypes in samples and evaluated whether differences in the proportions of cell subtypes were related to differences in IFN-<math><mrow><mi>β</mi></mrow></math> responsiveness. Among the four time points, one month was the time point when the training set GSE24427 and test set GSE33464 had the highest number of ISGs. Functional analysis showed that these one-month ISGs were enriched in biological functions such as the innate immune response, type-I interferon signalling pathway, and other IFN-<math><mrow><mi>β</mi></mrow></math>-associated functions. Based on these ISGs, we obtained a four-factor prediction model for IFN-<math><mrow><mi>β</mi></mrow></math> responsiveness including MX1, MX2, XAF1, and LAMP3. In addition, the model demonstrated favourable predictive performance within the training set and two external test sets. A higher proportion of activated NK cells and lower naive CD4/total CD4 ratio might indicate better drug responsiveness. This research developed a polygene-based biomarker model that could predict RRMS patient IFN-<math><mrow><mi>β</mi></mrow></math> responsiveness in the early treatment period. This model could probably help doctors screen out patients who would not benefit from IFN-<math><mrow><mi>β</mi></mrow></math> treatment early and determine whether a current treatment plan should be continued.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-01-25DOI: 10.1080/08916934.2024.2304820
Xianzhao Cao, Hongyan Fang, Longshu Zhou
{"title":"CircNRIP1 promotes proliferation, migration and phenotypic switch of Ang II-induced HA-VSMCs by increasing CXCL5 mRNA stability via recruiting IGF2BP1.","authors":"Xianzhao Cao, Hongyan Fang, Longshu Zhou","doi":"10.1080/08916934.2024.2304820","DOIUrl":"10.1080/08916934.2024.2304820","url":null,"abstract":"<p><p>Circular RNA (circRNA) has been found to be differentially expressed and involved in regulating the processes of human diseases, including thoracic aortic dissection (TAD). However, the role and mechanism of circNRIP1 in the TAD process are still unclear. GEO database was used to screen the differentially expressed circRNA and mRNA in type A TAD patients and age-matched normal donors. Angiotensin II (Ang II)-induced human aortic vascular smooth muscle cells (HA-VSMCs) were used to construct TAD cell models. The expression levels of circNRIP1, NRIP1, CXC-motif chemokine 5 (CXCL5) and IGF2BP1 were detected by quantitative real-time PCR. Cell proliferation and migration were determined by EdU assay, transwell assay and wound healing assay. The protein levels of synthetic phenotype markers, contractile phenotype markers, CXCL5 and IGF2BP1 were tested by western blot analysis. The interaction between IGF2BP1 and circNRIP1/CXCL5 was confirmed by RIP assay, and CXCL5 mRNA stability was assessed by actinomycin D assay. CircNRIP1 was upregulated in TAD patients and Ang II-induced HA-VSMCs. Knockdown of circNRIP1 suppressed Ang II-induced proliferation, migration and phenotypic switch of HA-VSMCs. Also, high expression of CXCL5 was observed in TAD patients, and its knockdown could inhibit Ang II-induced HA-VSMCs proliferation, migration and phenotypic switch. Moreover, CXCL5 overexpression reversed the regulation of circNRIP1 knockdown on Ang II-induced HA-VSMCs functions. Mechanistically, circNRIP1 could competitively bind to IGF2BP1 and subsequently enhance CXCL5 mRNA stability. CircNRIP1 might contribute to TAD progression by promoting CXCL5 mRNA stability <i>via</i> recruiting IGF2BP1.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-03-11DOI: 10.1080/08916934.2024.2321908
Qi Liu, Li Liao
{"title":"Identification of macrophage-related molecular subgroups and risk signature in colorectal cancer based on a bioinformatics analysis.","authors":"Qi Liu, Li Liao","doi":"10.1080/08916934.2024.2321908","DOIUrl":"10.1080/08916934.2024.2321908","url":null,"abstract":"<p><p>Macrophages play a crucial role in tumor initiation and progression, while macrophage-associated gene signature in colorectal cancer (CRC) patients has not been investigated. Our study aimed to identify macrophage-related molecular subgroups and develop a macrophage-related risk model to predict CRC prognosis. The mRNA expression profile and clinical information of CRC patients were obtained from TCGA and GEO databases. CRC patients from TCGA were divided into high and low macrophage subgroups based on the median macrophage score. The ESTIMATE and CIBERSORT algorithms were used to assess immune cell infiltration between subgroups. GSVA and GSEA analyses were performed to investigate differences in enriched pathways between subgroups. Univariate and LASSO Cox regression were used to build a prognostic risk model, which was further validated in the GSE39582 dataset. A high macrophage score subgroup was associated with poor prognosis, highly activated immune-related pathways and an immune-active microenvironment. A total of 547 differentially expressed macrophage-related genes (DEMRGs) were identified, among which seven genes (including RIMKLB, UST, PCOLCE2, ZNF829, TMEM59L, CILP2, DTNA) were identified by COX regression analyses and used to build a risk score model. The risk model shows good predictive and diagnostic values for CRC patients in both TCGA and GSE39852 datasets. Furthermore, multivariate Cox regression analysis showed that the risk score was an independent risk factor for overall survival in CRC patients. Our findings provided a novel insight into macrophage heterogeneity and its immunological role in CRC. This risk score model may serve as an effective prognostic tool and contribute to personalised clinical management of CRC patients.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The association of 25(OH)D, interleukin-4, interleukin-5, and interleukin-13 levels with the burden of soil-transmitted helminth infection in stunted children aged 24-59 months.","authors":"Riyadi Adrizain, Monika Verena Nagari, Djatnika Setiabudi, Afiat Berbudi, Budi Setiabudiawan","doi":"10.1080/08916934.2024.2330394","DOIUrl":"10.1080/08916934.2024.2330394","url":null,"abstract":"<p><p>Soil-transmitted helminth (STH) among children aged 24-59 months is one cause of chronic infection that could lead to stunting. The association of 25(OH)D and immune responses during chronic infection in stunted populations has not yet been well established. An association study of case-control data was conducted in Bandung district from October 2019 to January 2023. Sociodemographic factors, stool samples, and serum levels of 25(OH)D, interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13) were assessed. Statistical analysis was performed to evaluate the prevalence and association of 25(OH)D, IL-4, IL-5, and IL-13 with the burden of STH infection in stunted children. In total, 401 stunted children were recruited. A higher burden of STH infection was found for lower levels of IL-5 (<i>r</i> = -0.477; <i>p</i> = 0.004) and IL-13 (<i>r</i> = -0.433; <i>p</i> = 0.028). Thus, 25(OH)D, IL-4, IL-5, and IL-13 play a role in the burden of STH infection.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutoimmunityPub Date : 2024-12-01Epub Date: 2024-10-24DOI: 10.1080/08916934.2024.2419117
Huan Zhang, Kedi Fan, Zhentao Zhang, Yufan Guo, Xingbo Mo
{"title":"Genome-wide identification of cell type-specific susceptibility genes for Juvenile dermatomyositis through the analysis of N<sup>6</sup>-methyladenosine-associated SNPs.","authors":"Huan Zhang, Kedi Fan, Zhentao Zhang, Yufan Guo, Xingbo Mo","doi":"10.1080/08916934.2024.2419117","DOIUrl":"https://doi.org/10.1080/08916934.2024.2419117","url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have pinpointed genetic loci associated with juvenile dermatomyositis (JDM). Functional genes within the GWAS loci may be cell type-specific, but their identity remains largely unknown. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) plays a pivotal role in regulating various cellular processes and is linked to autoimmune diseases. This study aimed to underscore the potential functional genes within the GWAS loci through the analysis of m<sup>6</sup>A-associated SNPs (m<sup>6</sup>A-SNPs), specifically within relevant cell types. JDM-associated m<sup>6</sup>A-SNPs were identified from the GWAS summary dataset. The correlation between m<sup>6</sup>A-SNPs and gene expression was assessed through bulk tissue and single-cell eQTL analyses. To further investigate the relationship between gene expression and JDM, Mendelian randomization analysis was employed. Additionally, differential expression analyses were conducted on bulk tissues, as well as single-cell transcriptomic data comprising 6 JDM patients and 11 juvenile controls (99,396 cells). Seven m<sup>6</sup>A-SNPs associated with JDM were identified. Bulk tissue analysis revealed differential expression of <i>HLA-DPA1</i>, <i>HLA-DPB1</i>, <i>MICB</i>, <i>HLA-A</i>, <i>HLA-F</i>, <i>HLA-DQB2</i>, <i>HLA-DRB5</i>, <i>TAP2</i>, <i>PSMB9</i>, <i>MICA</i>, <i>AIF1</i>, and <i>DDX39B</i> influenced by m<sup>6</sup>A-SNPs, all showing associations with JDM in both differential expression and Mendelian randomization analyses. In single-cell analysis, the six m<sup>6</sup>A-SNPs within the HLA locus acted as cell-type-specific eQTLs, correlating with the expression of <i>HLA-A</i>, <i>HLA-B</i>, <i>HLA-C</i>, <i>HLA-DPB1</i>, <i>HLA-DQA1</i>, <i>HLA-DQB1</i> and <i>HLA-DRB1</i> in myeloid, T or B cells. Notably, these genes displayed abnormal expression in T, B, and myeloid cells of JDM patients. The present study identified m<sup>6</sup>A-SNPs within JDM susceptibility genes, shedding light on the intricate interplay between m<sup>6</sup>A-SNPs, gene expression, and JDM.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}