IDO1-mediated M2 macrophage polarization alleviates the progression of ankylosing spondylitis.

IF 3.3 4区 医学 Q3 IMMUNOLOGY
Autoimmunity Pub Date : 2025-12-01 Epub Date: 2024-12-18 DOI:10.1080/08916934.2024.2441134
Kangqi Ji, Lingfei Wang, Weijie Liu, Genfeng Li, Xiaoyu Lian, Jun Fan, Chen Song, Yanpeng Jian
{"title":"IDO1-mediated M2 macrophage polarization alleviates the progression of ankylosing spondylitis.","authors":"Kangqi Ji, Lingfei Wang, Weijie Liu, Genfeng Li, Xiaoyu Lian, Jun Fan, Chen Song, Yanpeng Jian","doi":"10.1080/08916934.2024.2441134","DOIUrl":null,"url":null,"abstract":"<p><p>Indoleamine 2,3-dioxygenase 1 (IDO1) plays an anti-inflammatory role in autoimmune disease. However, its specific function in ankylosing spondylitis (AS) remain unclear. This study aimed to investigate the potential role of IDO1 in AS. Immunofluorescence, RT-qPCR, and western blot assays were employed to measure gene expression, while ELISA was used to quantify the release of M1 macrophage and M2 macrophage markers. CCK-8, EdU, flow cytometry, ALP staining, and Alizarin red staining (ARS) assays were conducted for functional analysis. JASPAR predicted the binding sites between PPARγ and the promoter, which were further validated by luciferase and ChIP assays. Our findings revealed that the expression of IDO1 was markedly elevated in AS patients. IDO1 overexpression promoted the proliferation of THP-1 cells and M2 macrophage polarization. Conversely, IDO1 knockdown facilitated the osteogenic differentiation of BMSCs. Furthermore, IDO1-mediated upregulation of PPARγ modulated RUNX2 transcription. PPARγ overexpression counteracted the effects of IDO1 knockdown, thereby inhibiting the osteogenic differentiation of BMSCs. In conclusion, the IDO1/PPARγ/RUNX2 signaling pathway may protect against AS by promoting M2 macrophage polarization and inhibiting osteogenic differentiation.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"58 1","pages":"2441134"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2024.2441134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Indoleamine 2,3-dioxygenase 1 (IDO1) plays an anti-inflammatory role in autoimmune disease. However, its specific function in ankylosing spondylitis (AS) remain unclear. This study aimed to investigate the potential role of IDO1 in AS. Immunofluorescence, RT-qPCR, and western blot assays were employed to measure gene expression, while ELISA was used to quantify the release of M1 macrophage and M2 macrophage markers. CCK-8, EdU, flow cytometry, ALP staining, and Alizarin red staining (ARS) assays were conducted for functional analysis. JASPAR predicted the binding sites between PPARγ and the promoter, which were further validated by luciferase and ChIP assays. Our findings revealed that the expression of IDO1 was markedly elevated in AS patients. IDO1 overexpression promoted the proliferation of THP-1 cells and M2 macrophage polarization. Conversely, IDO1 knockdown facilitated the osteogenic differentiation of BMSCs. Furthermore, IDO1-mediated upregulation of PPARγ modulated RUNX2 transcription. PPARγ overexpression counteracted the effects of IDO1 knockdown, thereby inhibiting the osteogenic differentiation of BMSCs. In conclusion, the IDO1/PPARγ/RUNX2 signaling pathway may protect against AS by promoting M2 macrophage polarization and inhibiting osteogenic differentiation.

ido1介导的M2巨噬细胞极化可缓解强直性脊柱炎的进展。
吲哚胺2,3-双加氧酶1 (IDO1)在自身免疫性疾病中起抗炎作用。然而,其在强直性脊柱炎(AS)中的具体作用尚不清楚。本研究旨在探讨IDO1在AS中的潜在作用。采用免疫荧光、RT-qPCR、western blot检测基因表达,ELISA检测巨噬细胞M1、M2标记物的释放。CCK-8、EdU、流式细胞术、ALP染色、茜素红染色(ARS)进行功能分析。JASPAR预测了PPARγ与启动子之间的结合位点,并通过荧光素酶和ChIP实验进一步验证了这一预测。我们的研究结果显示,IDO1的表达在AS患者中明显升高。IDO1过表达促进THP-1细胞增殖和M2巨噬细胞极化。相反,IDO1敲低促进了骨髓间充质干细胞的成骨分化。此外,ido1介导的PPARγ上调可调节RUNX2的转录。PPARγ过表达抵消了IDO1敲低的影响,从而抑制骨髓间充质干细胞的成骨分化。综上所述,IDO1/PPARγ/RUNX2信号通路可能通过促进M2巨噬细胞极化和抑制成骨分化来保护AS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autoimmunity
Autoimmunity 医学-免疫学
CiteScore
5.70
自引率
8.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信