Aviation, space, and environmental medicine最新文献

筛选
英文 中文
Self-publishing in scientific research. 科研自主出版。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.4153.2014
William D Fraser
{"title":"Self-publishing in scientific research.","authors":"William D Fraser","doi":"10.3357/ASEM.4153.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4153.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1146-8"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4153.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In memoriam: Ralph G. Fennell. 纪念:拉尔夫·g·芬内尔。
{"title":"In memoriam: Ralph G. Fennell.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1157"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulated flying altitude and performance of continuous positive airway pressure devices. 模拟飞行高度和持续气道正压装置的性能。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.4013.2014
Maria Sehlin, Helge Brändström, Ola Winsö, Michael Haney, Karin Wadell, Fredrik Ohberg
{"title":"Simulated flying altitude and performance of continuous positive airway pressure devices.","authors":"Maria Sehlin,&nbsp;Helge Brändström,&nbsp;Ola Winsö,&nbsp;Michael Haney,&nbsp;Karin Wadell,&nbsp;Fredrik Ohberg","doi":"10.3357/ASEM.4013.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4013.2014","url":null,"abstract":"<p><strong>Introduction: </strong>Continuous positive airway pressure (CPAP) is used in air ambulances to treat patients with impaired oxygenation. Differences in mechanical principles between CPAP devices may affect their performance at different ambient air pressures, as will occur in an air ambulance during flight.</p><p><strong>Methods: </strong>Two different CPAP systems, a threshold resistor device and a flow resistor device, at settings of 5 and 10 cm H₂O were examined. Static pressure, static airflow, and pressure during simulated breathing were measured at ground level and at three different altitudes [2400 m (7874 ft), 3000 m (9843 ft), and 10,700 m (35,105 ft)].</p><p><strong>Results: </strong>When altitude increased, the performance of the two CPAP systems differed during both static and simulated breathing pressure measurements. With the threshold resistor CPAP, measured pressure levels were close to the preset CPAP level. Static pressure decreased 0.71 ± 0.35 cm H₂O at CPAP 10 cm H₂O compared to ground level and 35,105 ft (10,700 m). With the flow resistor CPAP, as the altitude increased, CPAP produced pressure levels increased. At 35,105 ft (10,700 m), the increase was 5.13 ± 0.33 cm H₂O at CPAP 10 cm H₂O.</p><p><strong>Discussion: </strong>The velocity of airflow through the flow resistor CPAP device is strongly influenced by reduced ambient air pressure, leading to a higher delivered CPAP effect than the preset CPAP level. Threshold resistor CPAP devices seem to have robust performance regardless of altitude. Thus, the threshold resistor CPAP device is probably more appropriate for CPAP treatment in an air ambulance cabin, where ambient pressure will vary during patient transport.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1092-9"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4013.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
You're the flight surgeon. 你是飞行军医。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.3940.2014
Marie-France McIntee
{"title":"You're the flight surgeon.","authors":"Marie-France McIntee","doi":"10.3357/ASEM.3940.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3940.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1151-3"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.3940.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mankind Beyond Earth: The History, Science, and Future of Human Space Exploration 地球之外的人类:人类太空探索的历史、科学和未来
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.3877.2014
Daniel M. Buckland
{"title":"Mankind Beyond Earth: The History, Science, and Future of Human Space Exploration","authors":"Daniel M. Buckland","doi":"10.3357/ASEM.3877.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3877.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":"75 1","pages":"1145-1145"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86143091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
You're the flight surgeon. 你是飞行军医。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.3918.2014
Angela Albrecht
{"title":"You're the flight surgeon.","authors":"Angela Albrecht","doi":"10.3357/ASEM.3918.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3918.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1149-51"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.3918.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Free fatty acids do not influence venous gas embolism in divers. 游离脂肪酸不影响潜水员静脉气体栓塞。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.3985.2014
Nico A M Schellart
{"title":"Free fatty acids do not influence venous gas embolism in divers.","authors":"Nico A M Schellart","doi":"10.3357/ASEM.3985.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3985.2014","url":null,"abstract":"<p><strong>Background: </strong>Decompression sickness is caused by bubbles of inert gas predominantly found in the venous circulation. Bubbles may exist longer when covered by a surfactant layer reducing surface tension. Surfactant candidates, based on 3D-structure and availability, are long-chain fatty acids (FFAs). It is hypothesized that sufficient molecular dissolved FFA (dFFA) result in higher bubble grades (BGs).</p><p><strong>Methods: </strong>Participating divers (52) either had a fat-rich or a fat-poor breakfast. After a dry dive simulation (21 msw/40 min), BGs were determined at 40, 80, 120, and 160 min after surfacing by the precordial Doppler method. The four individual scores were transformed to the Kisman Integrated Severity Score (KISS).</p><p><strong>Results: </strong>Kiss was not affected by meal fat content, and KISS and dFFA (calculated) were not associated, even though the fat-rich group had 3.5 times more dFFA. A paired approach (11 subjects exposed to fat-rich and fat-poor meals) yielded the same results. The measured FFA (albumin bound) was present in abundance, yet the long-chain dFFA concentration was probably too low (nM range) to form a surfactant monolayer, as follows from micelle theory.</p><p><strong>Conclusion: </strong>Bubble scores are not associated with dFFAs. Theoretically it is questionable whether long-chain dFFAs could form post-dive monolayers. It remains unclear which substance forms the surfactant layer around bubbles.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1086-91"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.3985.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Falling Upwards: How We Took to the Air 向上坠落:我们是如何飞到空中的
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.4151.2014
D. Kazdan
{"title":"Falling Upwards: How We Took to the Air","authors":"D. Kazdan","doi":"10.3357/ASEM.4151.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4151.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":"30 12 Pt 1 1","pages":"1145-1145"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82742549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Implanted medical devices in the radiation environment of commercial spaceflight. 商业航天辐射环境下的植入式医疗器械。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.4104.2014
David P Reyes, Steven S McClure, Jeffery C Chancellor, Rebecca S Blue, Tarah L Castleberry, James M Vanderploeg
{"title":"Implanted medical devices in the radiation environment of commercial spaceflight.","authors":"David P Reyes,&nbsp;Steven S McClure,&nbsp;Jeffery C Chancellor,&nbsp;Rebecca S Blue,&nbsp;Tarah L Castleberry,&nbsp;James M Vanderploeg","doi":"10.3357/ASEM.4104.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4104.2014","url":null,"abstract":"<p><strong>Introduction: </strong>Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment.</p><p><strong>Methods: </strong>A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs.</p><p><strong>Results: </strong>The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function.</p><p><strong>Discussion: </strong>Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1106-13"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4104.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Reaction time in pilots during intervals of high sustained g. 飞行员在高持续g间隔期间的反应时间。
Aviation, space, and environmental medicine Pub Date : 2014-11-01 DOI: 10.3357/ASEM.4009.2014
Olaf Truszczynski, Rafal Lewkowicz, Mieczyslaw Wojtkowiak, Marcin P Biernacki
{"title":"Reaction time in pilots during intervals of high sustained g.","authors":"Olaf Truszczynski,&nbsp;Rafal Lewkowicz,&nbsp;Mieczyslaw Wojtkowiak,&nbsp;Marcin P Biernacki","doi":"10.3357/ASEM.4009.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4009.2014","url":null,"abstract":"<p><strong>Introduction: </strong>An important problem for pilots is visual disturbances occurring under +Gz acceleration. Assessment of the degree of intensification of these disturbances is generally accepted as the acceleration tolerance level (ATL) criterion determined in human centrifuges. The aim of this research was to evaluate the visual-motor responses of pilots during rapidly increasing acceleration contained in cyclic intervals of +6 Gz to the maximum ATL.</p><p><strong>Methods: </strong>The study involved 40 male pilots ages 32-41 yr. The task was a quick and faultless response to the light stimuli presented on a light bar during exposure to acceleration until reaching the ATL. Simple response time (SRT) measurements were performed using a visual-motor analysis system throughout the exposures which allowed assessment of a pilot's ATL.</p><p><strong>Results: </strong>There were 29 pilots who tolerated the initial phase of interval acceleration and achieved +6 Gz, completing the test at ATL. Relative to the control measurements, the obtained results indicate a significant effect of the applied acceleration on response time. SRT during +6 Gz exposure was not significantly longer compared with the reaction time between each of the intervals. SRT and erroneous reactions indicated no statistically significant differences between the \"lower\" and \"higher\" ATL groups.</p><p><strong>Conclusion: </strong>SRT measurements over the +6-Gz exposure intervals did not vary between \"lower\" and \"higher\" ATL groups and, therefore, are not useful in predicting pilot performance. The gradual exposure to the maximum value of +6 Gz with exposure to the first three intervals on the +6-Gz plateau effectively differentiated pilots.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1114-20"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4009.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信