{"title":"Self-publishing in scientific research.","authors":"William D Fraser","doi":"10.3357/ASEM.4153.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4153.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1146-8"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4153.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In memoriam: Ralph G. Fennell.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1157"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Sehlin, Helge Brändström, Ola Winsö, Michael Haney, Karin Wadell, Fredrik Ohberg
{"title":"Simulated flying altitude and performance of continuous positive airway pressure devices.","authors":"Maria Sehlin, Helge Brändström, Ola Winsö, Michael Haney, Karin Wadell, Fredrik Ohberg","doi":"10.3357/ASEM.4013.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4013.2014","url":null,"abstract":"<p><strong>Introduction: </strong>Continuous positive airway pressure (CPAP) is used in air ambulances to treat patients with impaired oxygenation. Differences in mechanical principles between CPAP devices may affect their performance at different ambient air pressures, as will occur in an air ambulance during flight.</p><p><strong>Methods: </strong>Two different CPAP systems, a threshold resistor device and a flow resistor device, at settings of 5 and 10 cm H₂O were examined. Static pressure, static airflow, and pressure during simulated breathing were measured at ground level and at three different altitudes [2400 m (7874 ft), 3000 m (9843 ft), and 10,700 m (35,105 ft)].</p><p><strong>Results: </strong>When altitude increased, the performance of the two CPAP systems differed during both static and simulated breathing pressure measurements. With the threshold resistor CPAP, measured pressure levels were close to the preset CPAP level. Static pressure decreased 0.71 ± 0.35 cm H₂O at CPAP 10 cm H₂O compared to ground level and 35,105 ft (10,700 m). With the flow resistor CPAP, as the altitude increased, CPAP produced pressure levels increased. At 35,105 ft (10,700 m), the increase was 5.13 ± 0.33 cm H₂O at CPAP 10 cm H₂O.</p><p><strong>Discussion: </strong>The velocity of airflow through the flow resistor CPAP device is strongly influenced by reduced ambient air pressure, leading to a higher delivered CPAP effect than the preset CPAP level. Threshold resistor CPAP devices seem to have robust performance regardless of altitude. Thus, the threshold resistor CPAP device is probably more appropriate for CPAP treatment in an air ambulance cabin, where ambient pressure will vary during patient transport.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1092-9"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4013.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mankind Beyond Earth: The History, Science, and Future of Human Space Exploration","authors":"Daniel M. Buckland","doi":"10.3357/ASEM.3877.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3877.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":"75 1","pages":"1145-1145"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86143091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free fatty acids do not influence venous gas embolism in divers.","authors":"Nico A M Schellart","doi":"10.3357/ASEM.3985.2014","DOIUrl":"https://doi.org/10.3357/ASEM.3985.2014","url":null,"abstract":"<p><strong>Background: </strong>Decompression sickness is caused by bubbles of inert gas predominantly found in the venous circulation. Bubbles may exist longer when covered by a surfactant layer reducing surface tension. Surfactant candidates, based on 3D-structure and availability, are long-chain fatty acids (FFAs). It is hypothesized that sufficient molecular dissolved FFA (dFFA) result in higher bubble grades (BGs).</p><p><strong>Methods: </strong>Participating divers (52) either had a fat-rich or a fat-poor breakfast. After a dry dive simulation (21 msw/40 min), BGs were determined at 40, 80, 120, and 160 min after surfacing by the precordial Doppler method. The four individual scores were transformed to the Kisman Integrated Severity Score (KISS).</p><p><strong>Results: </strong>Kiss was not affected by meal fat content, and KISS and dFFA (calculated) were not associated, even though the fat-rich group had 3.5 times more dFFA. A paired approach (11 subjects exposed to fat-rich and fat-poor meals) yielded the same results. The measured FFA (albumin bound) was present in abundance, yet the long-chain dFFA concentration was probably too low (nM range) to form a surfactant monolayer, as follows from micelle theory.</p><p><strong>Conclusion: </strong>Bubble scores are not associated with dFFAs. Theoretically it is questionable whether long-chain dFFAs could form post-dive monolayers. It remains unclear which substance forms the surfactant layer around bubbles.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1086-91"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.3985.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Falling Upwards: How We Took to the Air","authors":"D. Kazdan","doi":"10.3357/ASEM.4151.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4151.2014","url":null,"abstract":"","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":"30 12 Pt 1 1","pages":"1145-1145"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82742549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olaf Truszczynski, Rafal Lewkowicz, Mieczyslaw Wojtkowiak, Marcin P Biernacki
{"title":"Reaction time in pilots during intervals of high sustained g.","authors":"Olaf Truszczynski, Rafal Lewkowicz, Mieczyslaw Wojtkowiak, Marcin P Biernacki","doi":"10.3357/ASEM.4009.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4009.2014","url":null,"abstract":"<p><strong>Introduction: </strong>An important problem for pilots is visual disturbances occurring under +Gz acceleration. Assessment of the degree of intensification of these disturbances is generally accepted as the acceleration tolerance level (ATL) criterion determined in human centrifuges. The aim of this research was to evaluate the visual-motor responses of pilots during rapidly increasing acceleration contained in cyclic intervals of +6 Gz to the maximum ATL.</p><p><strong>Methods: </strong>The study involved 40 male pilots ages 32-41 yr. The task was a quick and faultless response to the light stimuli presented on a light bar during exposure to acceleration until reaching the ATL. Simple response time (SRT) measurements were performed using a visual-motor analysis system throughout the exposures which allowed assessment of a pilot's ATL.</p><p><strong>Results: </strong>There were 29 pilots who tolerated the initial phase of interval acceleration and achieved +6 Gz, completing the test at ATL. Relative to the control measurements, the obtained results indicate a significant effect of the applied acceleration on response time. SRT during +6 Gz exposure was not significantly longer compared with the reaction time between each of the intervals. SRT and erroneous reactions indicated no statistically significant differences between the \"lower\" and \"higher\" ATL groups.</p><p><strong>Conclusion: </strong>SRT measurements over the +6-Gz exposure intervals did not vary between \"lower\" and \"higher\" ATL groups and, therefore, are not useful in predicting pilot performance. The gradual exposure to the maximum value of +6 Gz with exposure to the first three intervals on the +6-Gz plateau effectively differentiated pilots.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1114-20"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4009.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32758733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffery K Hovis, Nelda J Milburn, Thomas E Nesthus
{"title":"Protan response times to red lights in a mildly hypoxic environment.","authors":"Jeffery K Hovis, Nelda J Milburn, Thomas E Nesthus","doi":"10.3357/ASEM.4060.2014","DOIUrl":"https://doi.org/10.3357/ASEM.4060.2014","url":null,"abstract":"<p><strong>Purpose: </strong>This study was conducted to determine whether protans have slower reaction times to red lights than individuals with normal color vision and to identify whether protan reaction times increase differentially in a mildly hypoxic environment.</p><p><strong>Methods: </strong>Simple reaction times (SRT) to a red light-emitting diode (LED) display were measured using the Psychomotor Vigilance Task (PVT) at ground (1293 ft/394 m), simulated 12,400-ft (3780-m) altitude, and 20 min after returning to ground. Subjects were 13 individuals with normal color vision (NCV), 12 with a deutan color vision defect, and 4 with a protan color vision defect.</p><p><strong>Results: </strong>The mean reaction times increased by 8% with altitude and decreased after returning to ground for all groups. However, the reaction times of the protans were often faster than the NCV mean and never below the NCV 10(th) percentile. The only significant difference between color vision groups was the slowest mean reaction time of the NCV group was slower than both the pooled dichromats and pooled anomalous trichromats across all conditions by 23%. The number of lapses did not vary with altitude, but the dichromatic subjects had significantly fewer lapses than the trichromatic subjects across all conditions.</p><p><strong>Conclusion: </strong>Although protans may be slower to respond to some red warning lights, this decrement in performance could not be demonstrated under the conditions of our experiment. Furthermore, the protan group's simple reaction times were not differentially affected by mild hypoxia. These results suggest that the red LEDs were sufficiently bright for these protan observers.</p>","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":" ","pages":"1078-85"},"PeriodicalIF":0.0,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4060.2014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}