Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, Martin Riese
{"title":"Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms","authors":"Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, Martin Riese","doi":"10.5194/amt-16-5681-2023","DOIUrl":"https://doi.org/10.5194/amt-16-5681-2023","url":null,"abstract":"Abstract. Analyses of the mesosphere and lower thermosphere suffer from a lack of global measurements. This is problematic because this region has a complex dynamic structure, with gravity waves playing an important role. A limb-sounding spatial heterodyne interferometer (SHI) was developed to obtain atmospheric temperature retrieved from the O2 A-band emission, which can be used to derive gravity wave parameters in this region. The 2-D spatial distribution of the atmospheric scene is captured by a focal plane array. The SHI superimposes the spectral information onto the horizontal axis across the line-of-sight (LOS). In the usual case, the instrument exploits the horizontal axis to obtain spectral information and uses the vertical axis to get spatial information, i.e. temperature observations at the corresponding tangent points. This results in a finely resolved 1-D vertical atmospheric temperature profile. However, this method does not make use of the horizontal across-LOS information contained in the data. In this paper a new processing method is investigated, which uses single-sided interferograms to gain horizontal across-LOS information about the observed temperature field. Hereby, the interferogram is split, and each side is mirrored at the centre of the horizontal axis. Each side can then be used to retrieve an individual 1-D temperature profile. The location of the two retrieved temperature profiles is analysed using prescribed horizontal temperature variations, as it is needed for deriving wave parameters. We show that it is feasible to derive two independent temperature profiles, which however will increase the requirements of an accurate calibration and processing.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"11 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karl Voglmeier, Voltaire Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, Wolfgang Steinbrecht
{"title":"The transition to new ozone absorption cross-sections for Dobson and Brewer total ozone measurements","authors":"Karl Voglmeier, Voltaire Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, Wolfgang Steinbrecht","doi":"10.5194/amt-2023-220","DOIUrl":"https://doi.org/10.5194/amt-2023-220","url":null,"abstract":"<strong>Abstract.</strong> Comparison of total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers and from various satellite instruments generally reveals seasonally varying differences of a few percent. A large part of these differences has been attributed to the operationally used Bass & Paur ozone cross-sections and the lack of accounting for varying stratospheric temperatures in the standard total ozone retrieval for Dobson. This paper demonstrates how the use of new ozone absorption cross sections from the University of Bremen (Weber et al., 2016), as recommended by the committee on Absorption Cross-Sections of Ozone, the application of appropriate slit functions, especially for the Dobson instrument (Bernhard et al. 2005), and the use of climatological values for the effective ozone layer temperature (T<sub>eff</sub>), e.g. from TEMIS, essentially eliminate these seasonally varying differences between Dobson and Brewer total ozone data. Applying this approach to the existing global network of Dobson spectrometers will reduce the uncertainty of their total ozone data, from previously 3 to 4 % to better than 2.0 % at most locations.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"176 2 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, Helen Worden
{"title":"Advantages of assimilating multi-spectral satellite retrievals of atmospheric composition: A demonstration using MOPITT CO products","authors":"Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, Helen Worden","doi":"10.5194/amt-2023-238","DOIUrl":"https://doi.org/10.5194/amt-2023-238","url":null,"abstract":"<strong>Abstract.</strong> The Measurements Of Pollution In The Troposphere (MOPITT) is an ideal instrument to understand the impact of (1) assimilating multispectral/joint retrievals versus single-spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral/joint retrievals versus assimilating individual products separately. We use the Community Atmosphere Model with chemistry with the Data Assimilation Research Testbed (CAM-chem+DART) to assimilate different MOPITT CO products to address these three questions. Both anthropogenic and fire CO emissions are optimized in the data assimilation experiments. The results are compared with independent CO observations from TROPOspheric Monitoring Instrument (TROPOMI), the Total Carbon Column Observing Network (TCCON), NOAA Carbon Cycle Greenhouse Gases (CCGG) sites, In-service Aircraft for a Global Observing System (IAGOS), and Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN). We find that (1) assimilating the MOPITT joint (multispectral Near-IR and Thermal-IR) column product leads to better model-observation agreement at and near the surface than assimilating the MOPITT Thermal-IR-only column retrieval. (2) Assimilating column products has a larger impact and improvement for background and large-scale CO compared to assimilating profile products due to vertical localization in profile assimilation. However, profile assimilation can out-perform column assimilations in fire-impacted regions and near the surface. (3) Assimilating multispectral/joint products results in similar or slightly better agreement with observations compared to assimilating the single-spectral products separately.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"23 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, Zhanjun Quan
{"title":"Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system","authors":"Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, Zhanjun Quan","doi":"10.5194/amt-16-5659-2023","DOIUrl":"https://doi.org/10.5194/amt-16-5659-2023","url":null,"abstract":"Abstract. Instrumentation packages for eddy covariance (EC) measurements have been developed for unoccupied aerial vehicles (UAVs) to measure the turbulent fluxes of latent heat (LE), sensible heat (H), and CO2 (Fc) in the atmospheric boundary layer. This study aims to evaluate the performance of this UAV-based EC system. First, the measurement precision (1σ) of georeferenced wind was estimated to be 0.07 m s−1. Then, the effect of the calibration parameter and aerodynamic characteristics of the UAV on wind measurement was examined by conducting a set of calibration flights. The results showed that the calibration improved the quality of the measured wind field, and the influence of upwash and the leverage effect can be ignored in wind measurement by the UAV. Third, for the measurements of turbulent fluxes, the error caused by instrumental noise was estimated to be 0.03 µmolm-2s-1 for Fc, 0.02 W m−2 for H, and 0.08 W m−2 for LE. Fourth, data from the standard operational flights were used to assess the influence of resonance on the measurements and to test the sensitivity of the measurement under the variation (±30 %) in the calibration parameters around their optimum value. The results showed that the effect of resonance mainly affected the measurement of CO2 (∼5 %). The pitch offset angle (εθ) significantly affected the measurement of vertical wind (∼30 %) and turbulent fluxes (∼15 %). The heading offset angle (εψ) mainly affected the measurement of horizontal wind (∼15 %), and other calibration parameters had no significant effect on the measurements. The results lend confidence to the use of the UAV-based EC system and suggest future improvements for the optimization of the next-generation system.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"11 6","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, Matthias Tesche
{"title":"A cloud-by-cloud approach for studying aerosol-cloud interaction in satellite observations","authors":"Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, Matthias Tesche","doi":"10.5194/egusphere-2023-2773","DOIUrl":"https://doi.org/10.5194/egusphere-2023-2773","url":null,"abstract":"<strong>Abstract.</strong> The effective radiative forcing (ERF) due to aerosol-cloud interactions (ACI) and rapid adjustments (ERFaci) still causes the largest uncertainty in the assessment of climate change. It is understood only with medium confidence and studied primarily for warm clouds. Here, we present a novel cloud-by-cloud (C×C) approach for studying ACI in satellite observations that combines the concentration of cloud condensation nuclei (<em>n</em><sub>CCN</sub>) and ice nucleating particles (<em>n</em><sub>INP</sub>) from polar-orbiting lidar measurements with the development of the properties of individual clouds from tracking them in geostationary observations. We present a step-by-step description for obtaining matched aerosol-cloud cases. The application to satellite observations over Central Europe and Northern Africa during 2014 together with rigorous quality assurance leads to 399 liquid-only clouds and 95 ice-containing clouds that can be matched to surrounding <em>n</em><sub>CCN</sub> and <em>n</em><sub>INP</sub>, respectively, at cloud level. We use this initial data set for assessing the impact of changes in cloud-relevant aerosol concentrations on the cloud droplet number concentration (<em>N</em><sub>d</sub>) and effective radius (<em>r</em><sub>eff</sub>) of liquid clouds and the phase of clouds in the regime of heterogeneous ice formation. We find a Δ ln <em>N</em><sub>d</sub>/Δ ln <em>n</em><sub>CCN</sub> of 0.13 to 0.30 which is at the lower end of commonly inferred values of 0.3 to 0.8. The Δ ln <em>r</em><sub>eff</sub>/Δ ln <em>n</em><sub>CCN</sub> between -0.09 and -0.21 suggests that <em>r</em><sub>eff</sub> decreases by -0.81 to -3.78 nm per increase in <em>n</em><sub>CCN</sub> of 1 cm<sup>-3</sup>. We also find a tendency towards more cloud ice and more fully glaciated clouds with increasing <em>n</em><sub>INP</sub> that cannot be explained by the increasingly lower cloud-top temperature of super-cooled liquid, mixed-phase, and fully glaciated clouds alone. Applied to a larger amount of observations, the C×C approach has the potential to enable the systematic investigation of warm and cold clouds. This marks a step change in the quantification of ERFaci from space.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"32 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Carboni, Gareth E. Thomas, Richard Siddans, Brian Kerridge
{"title":"Singular Vector Decomposition (SVD) of satellite datasets: relation between cloud properties and climate indices","authors":"Elisa Carboni, Gareth E. Thomas, Richard Siddans, Brian Kerridge","doi":"10.5194/amt-2023-232","DOIUrl":"https://doi.org/10.5194/amt-2023-232","url":null,"abstract":"<strong>Abstract.</strong> We describe a technique using singular vector decomposition (SVD), that can identify the spatial patterns that best describe the temporal variability of a global satellite dataset. These patterns, and their temporal evolution, are then correlated with established climate indices. We apply this technique to datasets of cloud properties over three decades, derived from five visible/IR imagers ((A)ATSR, SLSTR-A/-B and MODIS and jointly from the IR and microwave sounders on MetOp (IASI, MHS,AMSU-A), but it can be more generically used to extract the pattern of variability of any regular gridded dataset such as different parameters from satellite products and models. The leading singular vector for these three independent global data sets, on both cloud fraction and cloud-top height, from these polar orbiting satellites covering different time periods, is found to be strongly correlated with the ENSO index. The SVD approach could potentially offer a new tool for using global satellite observations in assessing global climate model (GCM) performance.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"12 2","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Gabriele P. Stiller
{"title":"MIPAS ozone retrieval version 8: middle-atmosphere measurements","authors":"Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Gabriele P. Stiller","doi":"10.5194/amt-16-5609-2023","DOIUrl":"https://doi.org/10.5194/amt-16-5609-2023","url":null,"abstract":"Abstract. We present a new version of O3 data retrieved from the three Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observation modes that we refer to for simplicity as the modes of the middle atmosphere (middle atmosphere, MA; upper atmosphere, UA; and noctilucent cloud, NLC). The O3 profiles cover altitudes from 20 up to 100 km for the daytime and up to 105 km at nighttime, for all latitudes, and the period 2005 until 2012. The data have been obtained with the IMK–IAA (Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía) MIPAS level-2 data processor and are based on ESA version-8 re-calibrated radiance spectra with improved temporal stability. The processing included several improvements with respect to the previous version, such as the consistency of the microwindows and spectroscopic data with those used in the nominal-mode V8R data, the O3 a priori profiles, and updates of the non-local thermodynamic equilibrium (non-LTE) parameters and the nighttime atomic oxygen. In particular, the collisional relaxation of O3(v1,v3) by the atomic oxygen was reduced by a factor of 2 in order to obtain a better agreement of nighttime mesospheric O3 with “non-LTE-free” measurements. Random errors are dominated by the measurement noise with 1σ values for single profiles for the daytime of < 5 % below ∼ 60 km, 5 %–10 % between 60 and 70 km, 10 %–20 % at 70–90 km, and about 30 % at 95 km. For nighttime, they are very similar below 70 km but smaller above (10 %–20 % at 75–95 km, 20 %–30 % at 95–100 km and larger than 30 % above 100 km). The systematic error is ∼ 6 % below ∼ 60 km (dominated by uncertainties in spectroscopic data) and 8 %–12 % above ∼ 60 km, mainly caused by non-LTE uncertainties. The systematic errors in the 80–100 km range are significantly smaller than in the previous version. The major differences with respect to the previous version are as follows: (1) the new retrievals provide O3 abundances in the 20–50 km altitude range that are larger by about 2 %–5 % (0.2–0.5 ppmv); (2) O3 abundances were reduced by ∼ 2 %–4 % between 50 and 60 km in the tropics and mid-latitudes; (3) O3 abundances in the nighttime O3 minimum just below 80 km were reduced, leading to a more realistic diurnal variation; (4) daytime O3 concentrations in the secondary maximum at the tropical and middle latitudes (∼ 40 %, 0.2–0.3 ppmv) were larger; and (5) nighttime O3 abundances in the secondary maximum were reduced by 10 %–30 %. The O3 profiles retrieved from the nominal mode (NOM) and the middle-atmosphere modes are fully consistent in their common altitude range (20–70 km). Only at 60–70 km does daytime O3 of NOM seem to be larger than that of MA/UA by 2 %–10 %. Compared to other satellite instruments, MIPAS seems to have a positive bias of 5 %–8 % below 70 km. Noticeably, the new version of MIPAS data agrees much better than before with all instruments in the upper mesosphere–lower thermosphere, reducing the diffe","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"25 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, Howard J. Diamond
{"title":"A new reference-quality precipitation gauge wind shield","authors":"John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, Howard J. Diamond","doi":"10.5194/amt-16-5647-2023","DOIUrl":"https://doi.org/10.5194/amt-16-5647-2023","url":null,"abstract":"Abstract. Gauge-based precipitation measurements suffer from undercatch due to the effects of wind, with solid-precipitation measurements especially susceptible to such errors. When it is snowing and windy, unshielded precipitation gauges can catch less than half of the amount of precipitation of a gauge that is protected from the wind. For this reason, the US Climate Reference Network (USCRN) developed a large, double-layer, wooden wind shield called the Small Double Fence Intercomparison Reference (SDFIR). In past studies, the SDFIR has been demonstrated to be the most effective wind shield in use in any weather or climate network, reducing solid-precipitation undercatch to less than 10 % in wind speeds up to 8 m s−1. However, the wooden SDFIRs are subject to decay, they are difficult to replace and maintain, and they hinder access to maintaining the gauge. For these reasons, a new precipitation gauge wind shield called the Low Porosity Double Fence (LPDF) has been developed for use in the USCRN. Tested at three separate sites chosen for prevalent windy and snowy weather, the precipitation measurements recorded within the LPDF compared well to the SDFIR. After more than 2 years of measurements, the total precipitation recorded by the LPDF at each individual site differed by ±1.2 %, and the total LPDF accumulation from all sites was 0.03 % greater than the SDFIR accumulation. For the measurement of solid precipitation, the LPDF-shielded measurements were statistically indistinguishable from those in the SDFIR shield, and the time series of accumulation from precipitation gauges shielded by the SDFIR and the LPDF were almost identical. This new wind shield is much smaller and easier to install and maintain than any other reference-quality wind shield for the measurement of solid precipitation and may be of use within other meteorological, hydrological, and climate networks. It could also serve as a secondary reference precipitation measurement for precipitation intercomparisons held in remote locations where the construction of a full-sized Double Fence Intercomparison Reference (DFIR) shield is not feasible.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"9 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-angle aerosol optical depth retrieval method based on improved surface reflectance","authors":"Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, Haishan Chen","doi":"10.5194/amt-2023-204","DOIUrl":"https://doi.org/10.5194/amt-2023-204","url":null,"abstract":"<strong>Abstract.</strong> Retrieval of terrestrial aerosol optical depth (AOD) has been a challenge for satellite Earth observations, mainly due to the difficulty of estimating surface reflectance caused by land-atmosphere coupling. Current satellite AOD retrieval products have low spatial resolution under complex surface processes. In this study, based on our previous studies of AOD retrieval, we further improved the estimation method of surface reflectance by establishing an error correction model and then obtained a more accurate AOD. A lookup table is constructed using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) to obtain high-precision retrieval of AOD. The retrieval accuracy of the algorithm is verified by AERONET (Aerosol Robotic Network) observations. The results indicate that the retrieved AOD based on the improved method of this study has advantages in fewer missing AOD pixels and finer spatial resolution, as compared to the MODIS AOD product and our previous estimation method. Among the nine MISR angles, the optimal correlation coefficient (R) of retrieved AOD and observed AOD can reach 0.89. Root mean square error (RMSE) and relative mean bias (RMB) can reach a minimum values of 0.20 and 0.32, respectively. This study will help to further improve the accuracy of retrieving multi-angle AOD at large spatial scales and long time series.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"12 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, Martine De Mazière
{"title":"Atmospheric N2O and CH4 total columns retrieved from low-resolution Fourier transform infrared (FTIR) spectra (Bruker VERTEX 70) in the mid-infrared region","authors":"Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, Martine De Mazière","doi":"10.5194/amt-16-5593-2023","DOIUrl":"https://doi.org/10.5194/amt-16-5593-2023","url":null,"abstract":"Abstract. Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases in the atmosphere. In 2019, mid-infrared (MIR) solar absorption spectra were recorded by a Bruker VERTEX 70 spectrometer and a Bruker IFS 125HR spectrometer at Sodankylä, Finland, at spectral resolutions of 0.2 and 0.005 cm−1, respectively. The N2O and the CH4 retrievals from high-resolution MIR spectra have been well investigated within the Network for the Detection of Atmospheric Composition Change (NDACC) but not for MIR spectra gathered with instruments operating at low spectral resolution. In this study, N2O and CH4 retrieval strategies and retrieval uncertainties from the VERTEX 70 MIR low-resolution spectra are discussed and presented. The accuracy and precision of the VERTEX 70 N2O and CH4 retrievals are assessed by comparing them with the coincident 125HR retrievals and AirCore measurements. The relative differences between the N2O total columns retrieved from 125HR and VERTEX 70 spectra are −0.3 ± 0.7 (1σ) % with a correlation coefficient (R) of 0.93. Regarding the CH4 total column, we first used the same retrieval microwindows for 125HR and VERTEX 70 spectra, but there is an underestimation in the VERTEX 70 retrievals, especially in summer. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX 70 spectra are -1.3±1.1 (1σ) % with a R value of 0.77. To improve the VERTEX 70 CH4 retrievals, we propose alternative retrieval microwindows. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX 70 spectra in these new windows become 0.0±0.8 (1σ) %, along with an increase in the R value to 0.87. The coincident AirCore measurements confirm that the VERTEX 70 CH4 retrievals using the latter window choice are better, with relative mean differences between the VERTEX 70 CH4 retrievals and AirCore measurements of −1.9 % for the standard NDACC microwindows and of 0.13 % for the alternative microwindows. This study provides insight into the N2O and CH4 retrievals from the low-resolution (0.2 cm−1) MIR spectra observed with a VERTEX 70 spectrometer, and it demonstrates the suitability of this kind of instrument for contributing to satellite validation, model verification, and other scientific campaigns with the advantage of its transportability and lower cost compared to standard NDACC-type Fourier-transform infrared (FTIR) instruments.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138503580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}