{"title":"Biosensors: Types, features, and application in biomedicine","authors":"E. Karami, F. Kazemi-Lomedasht","doi":"10.4103/2221-1691.354427","DOIUrl":"https://doi.org/10.4103/2221-1691.354427","url":null,"abstract":"Fast and precise diagnostic techniques are required for the treatment of many disorders. Biosensors are one of the diagnostic devices that are applicable in biological and medical sciences. Biosensors could be utilized to recognize biological molecules with high sensitivity. Biosensors are consisted of different components and have different types. Each type of biosensor is used in a particular field according to its specific features. Nanobodies are a novel class of antibodies with small size, high affinity, and specificity to their target. The unique properties of nanobodies make them appropriate tools for diagnostic applications. In this paper, we review biosensors, and their features and roles in medicine. Antibody/nanobody-based biosensors are also specifically discussed.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46082479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dehydroabietic acid chemosensitizes drug-resistant acute lymphoblastic leukemia cells by downregulating survivin expression","authors":"L. Shen, Wei-hua Huang, Huijun Zhao, Xue-Wei Yuan","doi":"10.4103/2221-1691.354429","DOIUrl":"https://doi.org/10.4103/2221-1691.354429","url":null,"abstract":"Objective: To explore the mechanism of drug resistance in acute lymphoblastic leukemia and the anti-tumor effect of combination therapy of dehydroabietic acid and vincristine against acute lymphoblastic leukemia cells. Methods: Acute lymphoblastic leukemia cells REH and CCRF- CEM were employed to detect the anti-tumor effect of vincristine and doxorubicin on proliferation and apoptosis using EdU assay, human active caspase-3 Quantikine ELISA kit, and flow cytometry. Vincristine-resistant REH cells (REH-R), survivin knockdown and overexpressing REH cells were established to verify the role of survivin in drug resistance. Additionally, in vitro and in vivo assays were performed to determine the effect of dehydroabietic acid on the cytotoxicity of vincristine. Results: Vincristine and doxorubicin markedly suppressed proliferation and induced apoptosis of REH and CCRF-CEM cells. Survivin expression was upregulated in REH-R cells compared with REH cells. Knockdown of survivin expression obviously restored the sensitivity of REH-R cells to vincristine. Akt phosphorylation was also increased in REH-R cells compared to REH cells. In addition, LY294002, a PI3k/Akt pathway blocker, inhibited survivin expression and enhanced cytotoxicity of vincristine to REH-R cells. Dehydroabietic acid effectively reduced survivin expression in REH-R cells, thereby enhancing the therapeutic effect of vincristine on drug-resistant cells. Survivin overexpression markedly reduced the effect of dehydroabietic acid on enhancing the anti-proliferation and inducing apoptosis effect of vincristine. Moreover, the combination of dehydroabietic acid with vincristine significantly extended the survival rate in a mouse xenograft model of acute lymphoblastic leukemia, compared with vincristine treatment alone. Conclusions: Dehydroabietic acid may be used as a potential candidate for the treatment of acute lymphoblastic leukemia in combination with vincristine.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41972483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Leelawat, K. Leelawat, Thaniya Wannakup, Worawan Saingam, Nanthaphong Khamthong, F. Madaka, A. Maha, Patamaporn Pathompak, Lukman Sueree, T. Songsak
{"title":"Anticancer activity of Δ9-tetrahydrocannabinol and cannabinol in vitro and in human lung cancer xenograft","authors":"S. Leelawat, K. Leelawat, Thaniya Wannakup, Worawan Saingam, Nanthaphong Khamthong, F. Madaka, A. Maha, Patamaporn Pathompak, Lukman Sueree, T. Songsak","doi":"10.4103/2221-1691.350180","DOIUrl":"https://doi.org/10.4103/2221-1691.350180","url":null,"abstract":"Objective: To investigate the effects of Δ9-tetrahydrocannabinol, the principal psychoactive compound of Cannabis sativa, and cannabinol, a Δ9-tetrahydrocannabinol degradative product, on human non-small cell lung cancer cells. Methods: Δ9-Tetrahydrocannabinol and cannabinol were tested for anticancer activity in human non-small cell lung cancer (A549) cells. The effects on cell proliferation, apoptosis, and phosphorylation profiles were examined. The effects of Δ9-tetrahydrocannabinol and cannabinol on tumor growth were also investigated using a xenograft nude mouse model. Apoptosis and targeted phosphorylation were verified by immunohistochemistry. Results: Δ9-Tetrahydrocannabinol and cannabinol significantly inhibited cell proliferation and increased the number of apoptotic cells in a concentration-dependent manner. The Δ9-tetrahydrocannabinol- and cannabinol-treated cells had lower levels of phosphorylated protein kinase B [AKT (S473)], glycogen synthase kinase 3 alpha/beta, and endothelial nitric oxide synthase compared to the controls. The study of xenograft mice revealed that tumors treated with 15 mg/kg Δ9-tetrahydrocannabinol or 40 mg/kg cannabinol were significantly smaller than those of the control mice. The tumor progression rates in mice treated with 15 mg/kg Δ9-tetrahydrocannabinol or 40 mg/kg cannabinol were significantly slower than in the control group. Conclusions: These findings indicate that Δ9-tetrahydrocannabinol and cannabinol inhibit lung cancer cell growth by inhibiting AKT and its signaling pathways, which include glycogen synthase kinase 3 alpha/beta and endothelial nitric oxide synthase.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49156140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sadiq, Chibuzo Egwuenu, R. Wasagu, U. Umar, B. Usman
{"title":"β-Islet cell regeneration potential of Mirabilis jalapa in hyperglycemic rats","authors":"M. Sadiq, Chibuzo Egwuenu, R. Wasagu, U. Umar, B. Usman","doi":"10.4103/2221-1691.350183","DOIUrl":"https://doi.org/10.4103/2221-1691.350183","url":null,"abstract":"Objective: To investigate the role of Mirabilis jalapa root extracts in restoration of glucose homeostasis in alloxan-induced hyperglycemic Wistar albino rats. Methods: Experimental hyperglycemic rats were treated daily with 200 and 400 mg/kg of Mirabilis jalapa extracts after initial fasting for 6 h. Two-hour postprandial glucose and changes in body weight were monitored during treatment. After 14 d, the rats were sacrificed and blood was collected for biochemical assessment of serum glucose and insulin levels, lipid profile, and oxidative stress markers. Histopathological examinations of harvested pancreas were also carried out. Results: Mirabilis jalapa root extracts at 200 and 400 mg/kg increased the body weight of hyperglycemic rats. Postprandial glucose levels of the extract-treated hyperglycemic groups progressively declined during treatment compared with the untreated hyperglycemic control group (P<0.05). The lipid profile indices of the untreated negative control group were significantly elevated (P<0.05), which were reversed by treatment with Mirabilis jalapa extracts. The remarkable increases in antioxidant enzyme activities and a significant decrease in malondialdehyde levels were observed in the hyperglycemic group treated with Mirabilis jalapa extracts. Mirabilis jalapa extracts also significantly increased serum insulin levels (P<0.05). In addition, histopathological examinations of the pancreas revealed a significant cell population within the islet nests of the extract-treated hyperglycemic groups. Conclusions: Mirabilis jalapa extract can restore glucose homeostasis and show hypoglycemic and hypolipidemic effects in hyperglycemic rats. Further studies are needed to verify the active components of the plant and the underlying mechanism of action in the future.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43888054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Widowati, T. Wargasetia, Fanny Rahardja, R. Gunanegara, D. Priyandoko, M. Gondokesumo, Ervi Afifah, C. Wijayanti, R. Rizal
{"title":"Human Wharton’s jelly mesenchymal stem cells inhibit cytokine storm in acute respiratory distress syndrome in a rat model","authors":"W. Widowati, T. Wargasetia, Fanny Rahardja, R. Gunanegara, D. Priyandoko, M. Gondokesumo, Ervi Afifah, C. Wijayanti, R. Rizal","doi":"10.4103/2221-1691.350182","DOIUrl":"https://doi.org/10.4103/2221-1691.350182","url":null,"abstract":"Objective: To evaluate the potential effect of human Wharton’s jelly mesenchymal stem cells (hWJMSCs) on acute respiratory distress syndrome in lipopolysaccharide (LPS)-induced rats. Methods: The hWJMSCs (5×104/mL, 5×105/mL, 5×106/mL) were administered to rats on day 1 and day 8 after being induced by LPS (5 mg/kg body weight). TNF-α levels in the lung and IL- 18 and IL-1β levels in the serum were measured using ELISA. In addition, caspase-1 expression in lung tissues was quantified using qRT-PCR, and NF-κB and IL-6 expressions were assessed using immunohistochemistry. Results: The hWJMSCs decreased TNF-α levels in the lung and plasma IL-18 and IL-1β levels. Moreover, the hWJMSCs downregulated the expressions of caspase-1, IL-6, and NF-κB in lung tissues. Conclusions: The hWJMSCs can decrease inflammatory markers of acute respiratory distress syndrome in a rat model and may be further investigated for the treatment of acute respiratory distress syndrome.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46769039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Li, Bo-chen Wang, Kai-Wen Lin, Tang Deng, Qifeng Huang, Shuangqing Xu, Hangfei Wang, Xinxin Wu, Nan Li, Yang Yi, Jinghui Peng, Yue Huang, Jin Qian, Xiaoran Liu
{"title":"Anthrahydroquinone-2,6-disulfonate alleviates paraquat-induced kidney injury via the apelin-APJ pathway in rats","authors":"Qi Li, Bo-chen Wang, Kai-Wen Lin, Tang Deng, Qifeng Huang, Shuangqing Xu, Hangfei Wang, Xinxin Wu, Nan Li, Yang Yi, Jinghui Peng, Yue Huang, Jin Qian, Xiaoran Liu","doi":"10.4103/2221-1691.350181","DOIUrl":"https://doi.org/10.4103/2221-1691.350181","url":null,"abstract":"Objective: To explore the protective effects of anthrahydroquinone- 2,6-disulfonate (AH2QDS) on the kidneys of paraquat (PQ) poisoned rats via the apelin-APJ pathway. Methods: Male Sprague Dawley rats were divided into four experimental groups: control, PQ, PQ+sivelestat, and PQ+AH2QDS. The PQ+sivelestat group served as the positive control group. The model of poisoning was established via intragastric treatment with a 20% PQ pesticide solution at 200 mg/kg. Two hours after poisoning, the PQ+sivelestat group was treated with sivelestat, while the PQ+AH2QDS group was given AH2QDS. Six rats were selected from each group on the first, third, and seventh days after poisoning and dissected after anesthesia. The PQ content of the kidneys was measured using the sodium disulfite method. Hematoxylin-eosin staining of renal tissues was performed to detect pathological changes. Apelin expression in the renal tissues was detected using immunofluorescence. Western blotting was used to detect the expression levels of the following proteins in the kidney tissues: IL- 6, TNF-α, apelin-APJ (the apelin-angiotensin receptor), NF-κB p65, caspase-1, caspase-8, glucose-regulated protein 78 (GRP78), and the C/EBP homologous protein (CHOP). In in vitro study, a PQ toxicity model was established using human tubular epithelial cells treated with standard PQ. Twenty-four hours after poisoning, sivelestat and AH2QDS were administered. The levels of oxidative stress in human renal tubular epithelial cells were assessed using a reactive oxygen species fluorescence probe. Results: The PQ content in the kidney tissues of the PQ group was higher than that of the PQ+AH2QDS group. Hematoxylin-eosin staining showed extensive hemorrhage and congestion in the renal parenchyma of the PQ group. Vacuolar degeneration of the renal tubule epithelial cells, deposition of crescent-like red staining material in renal follicles, infiltration by a few inflammatory cells, and a small number of cast formation were also observed. However, these pathological changes were less severe in the PQ+sivelestat group and the PQ+AH2QDS group (P<0.05). On the third day after poisoning, immunofluorescence assay showed that the level of apelin in the renal tissues was significantly higher in the PQ+AH2QDS group than in the PQ group. Western blotting analysis results showed that IL-6, TNF-α, NF-κB p65, caspase-1, caspase-8, GRP78, and CHOP protein levels in the PQ group were higher than in the PQ+AH2QDS group (P<0.05). The expression of apelin-APJ proteins in the PQ+AH2QDS group was higher than in the PQ+sivelestat and PQ groups (P<0.05); this difference was significant on Day 3 and Day 7. The level of oxidative stress in the renal tubular epithelial cells of the PQ+AH2QDS group and the PQ+sivelestat group was significantly lower than in the PQ group (P<0.05). Conclusions: This study confirms that AH2QDS has a protective effect on PQ-poisoned kidneys and its positive effect is superior to that of sivelestat. T","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48185446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Fatani, O. Baothman, L. Shash, Huda Abuaraki, M. Zeyadi, S. Hosawi, Hisham N Altayb, M. Abo-Golayel
{"title":"Hepatoprotective effect of date palm fruit extract against doxorubicin intoxication in Wistar rats: In vivo and in silico studies","authors":"A. Fatani, O. Baothman, L. Shash, Huda Abuaraki, M. Zeyadi, S. Hosawi, Hisham N Altayb, M. Abo-Golayel","doi":"10.4103/2221-1691.350184","DOIUrl":"https://doi.org/10.4103/2221-1691.350184","url":null,"abstract":"Objective: To investigate the prophylactic efficacy of date palm fruit extract against doxorubicin-induced hepatotoxicity in Wistar albino rats. Methods: The rats were equally and randomly assigned to 6 groups: group 1 (untreated control), group 2 and 3 given daily oral administration of prophylactic aqueous extract of date palm fruit at 0.75 and 1.5 mg/kg body weight, respectively, and group 4, 5 and 6 intraperitoneally injected with doxorubicin at 15 mg/kg on day 30. Rats in group 5 and 6 received daily oral administration of aqueous extract of date palm fruit at 0.75 and 1.5 mg/kg body weight, respectively, for 30 d. The phytochemicals identified by GC-MS analysis were analyzed using in silico study. Antioxidant enzymes, liver enzymatic, biochemical parameters and histopathological analysis were determined to evaluate hepatoprotective activity of date extract. Results: Aqueous extract of date palm fruit significantly mitigated doxorubicin-induced changes in activities of liver enzymes, reduced reactive oxygen species levels, and suppressed lipid peroxidation and DNA damage. Moreover, aqueous extract of date palm fruit reduced doxorubicin-induced hepatic lesions. Molecular docking studies showed that most compounds of aqueous extract of date palm fruit identified via GC-MS had good interaction with proteins of human pregnane X receptor, oxygenase-1, and CYP2C9. Conclusions: The aqueous extract of date palm fruit mitigates doxorubicin-mediated DNA damage and hepatotoxicity, and restores normal liver function and may be a promising agent against the deleterious effects of doxorubicin.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49109976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prodigiosin from Serratia: Synthesis and potential applications","authors":"S. Mnif, Marwa Jardak, B. Bouizgarne, S. Aifa","doi":"10.4103/2221-1691.345515","DOIUrl":"https://doi.org/10.4103/2221-1691.345515","url":null,"abstract":"Prodigiosin is a red pigment with a pyrrolylpyrromethane skeleton. It is mainly produced by bacterial strains belonging to the Serratia genus, but also by some other genera, including Streptomyces and Vibrio. Within the genus Serratia, the pigment is generally produced as a virulence factor. However, it also has many important beneficial biological activities such as immunosuppressive and anti- proliferative activities. Moreover, the pigment has many industrial applications in textile and cosmetics. In this mini-review, we discuss the genetic and molecular mechanisms supporting prodigiosin synthesis and production from the Serratia genus, as well as its potential applications.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42512119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiafeng Hu, Wanwan Liu, Ren Zhang, Wei Zhang, Chaowu Wang, Meng Chen, R. Shu, Xingang Yang, Qianqian Wang
{"title":"Essential oil from Saussurea costus inhibits proliferation and migration of Eca109 cells via mitochondrial apoptosis and STAT3 signaling","authors":"Xiafeng Hu, Wanwan Liu, Ren Zhang, Wei Zhang, Chaowu Wang, Meng Chen, R. Shu, Xingang Yang, Qianqian Wang","doi":"10.4103/2221-1691.345517","DOIUrl":"https://doi.org/10.4103/2221-1691.345517","url":null,"abstract":"Objective: To investigate the effect and its underlying molecular mechanisms of essential oil from Saussurea costus in esophageal cancer cell line Eca109. Methods: The chemical composition of essential oil from Saussurea costus was investigated by gas chromatography-mass spectrometry (GC-MS). The anti-proliferative, anti-migrative, and apoptotic effects of essential oil from Saussurea costus against Eca109 cells were analyzed. Moreover, the expression of proteins associated with cell cycle, metastasis, and apoptosis was determined. Results: GC-MS analysis showed that essential oil from Saussurea costus was predominantly comprised of sesquiterpenes. Saussurea costus essential oil inhibited the viability of Eca109 cells in a dose-and time-dependent manner with IC50 values of (24.29±1.49), (19.16±2.27) and (6.97±0.86) μg/mL at 12, 24, and 48 h, respectively. The expression levels of target proteins in the cell cycle (phase G1/S), including cyclin D1, p21, and p53, were affected by Saussurea costus essential oil. The essential oil also downregulated the expression of metastasis-related proteins MMP-9 and MMP-2. Moreover, it induced apoptosis of Eca109 cells through the mitochondrial pathway, as well as inhibition of STAT3 phosphorylation. Conclusions: The essential oil from Saussurea costus exhibited anti-proliferative, anti-migrative, and apoptotic effects on Eca109 cells, and could be further explored as a potential anti-esophageal cancer agent.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44101061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic potential of Calotropis gigantea extract against invasive pulmonary aspergillosis: In vitro and in vivo study","authors":"E. Ali, Manal A. Alfwuaires, G. Badr","doi":"10.4103/2221-1691.345516","DOIUrl":"https://doi.org/10.4103/2221-1691.345516","url":null,"abstract":"Objective: To characterize the antifungal activity of methanolic leaf extract of Calotropis gigantea alone or in combination with amphotericin B against invasive pulmonary aspergillosis in mice. Methods: GC/MS was used for analysis of active constituents of Calotropis gigantea extract. Spore germination assay and broth micro-dilution method were used to determine antifungal potential of Calotropis gigantea/amphotericin B against Aspergillus fumigatus. Neutropenic mice were randomly assigned into 5 groups: group 1 was neutropenic (control); group 2 was infected with Aspergillus fumigatus; group 3 was infected with Aspergillus fumigatus, and treated with Calotropis gigantea extract; group 4 was infected with Aspergillus fumigatus and treated with amphotericin B; group 5 was infected with Aspergillus fumigatus and treated with both Calotropis gigantea extract and amphotericin B. Fresh lung tissues were histopathologically examined. Fungal burden and gliotoxin concentration were evaluated in lung tissues. Catalase, superoxide dismutase, and malondialdehyde content were determined in lung tissues. Myeloperoxidase, tumor necrosis factor-alpha, interleukin-1, and interleukin-17 were also estimated by the sandwich enzyme-linked immuno-sorbent assay. Results: Calotropis gigantea/amphotericin B had a minimum inhibitory concentration and minimum fungicidal concentration of 80 and 160 μg/mL, respectively, for Aspergillus fumigatus. Additionally, Calotropis gigantea/amphotericin B significantly reduced lung fungal burden by 72.95% and inhibited production of gliotoxin in lung tissues from 6 320 to 1 350 μg/g lung. Calotropis gigantea/amphotericin B reduced the oxidative stress of the lung via elevating the activity of antioxidant enzymes and decreasing the levels of lipid peroxidation. Myeloperoxidase activity and the production of pro-inflammatory cytokines were also significantly reduced. Scanning electron microscopy revealed deteriorations in the hyphae ultrastructure in Calotropis gigantea/amphotericin B treated Aspergillus fumigatus and leak of cellular components after damage of the cell wall. In vivo study revealed the suppression of lung tissue damage in mice of invasive pulmonary aspergillosis, which was improved with Calotropis gigantea/amphotericin B compared to the control group. Conclusions: Calotropis gigantea/amphotericin B is a promising treatment to reduce lung fungal burden and to improve the drugs’ therapeutic effect against invasive pulmonary aspergillosis.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47027723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}