{"title":"Schubert Products for Permutations with Separated Descents.","authors":"Daoji Huang","doi":"10.1093/imrn/rnac299","DOIUrl":"https://doi.org/10.1093/imrn/rnac299","url":null,"abstract":"We say that two permutations $pi$ and $rho$ have separated descents at position $k$ if $pi$ has no descents before position $k$ and $rho$ has no descents after position $k$. We give a counting formula, in terms of reduced word tableaux, for computing the structure constants of products of Schubert polynomials indexed by permutations with separated descents. Our approach uses generalizations of Sch\"utzenberger's jeu de taquin algorithm and the Edelman-Greene correspondence via bumpless pipe dreams.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78853390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Corcino, Jay M. Ontolan, Maria Rowena S. Lobrigas
{"title":"Explicit Formulas for the First Form (q,r)-Dowling Numbers and (q,r)-Whitney-Lah Numbers","authors":"R. Corcino, Jay M. Ontolan, Maria Rowena S. Lobrigas","doi":"10.29020/NYBG.EJPAM.V14I1.3900","DOIUrl":"https://doi.org/10.29020/NYBG.EJPAM.V14I1.3900","url":null,"abstract":"In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r}[n,k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q,r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton's Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q,r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90312611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tit-for-Tat Strategy as a Deformed Zero-Determinant Strategy in Repeated Games","authors":"M. Ueda","doi":"10.7566/JPSJ.90.025002","DOIUrl":"https://doi.org/10.7566/JPSJ.90.025002","url":null,"abstract":"We introduce the concept of deformed zero-determinant strategies in repeated games. We then show that the Tit-for-Tat strategy in the repeated prisoner's dilemma game is a deformed zero-determinant strategy, which unilaterally equalizes the probability distribution functions of payoffs of two players.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86992966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An inequality for coefficients of the real-rooted polynomials","authors":"J. Guo","doi":"10.1016/J.JNT.2021.02.011","DOIUrl":"https://doi.org/10.1016/J.JNT.2021.02.011","url":null,"abstract":"","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78099644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discordant sets and ergodic Ramsey theory.","authors":"V. Bergelson, Jake Huryn, R. Raghavan","doi":"10.2140/involve.2022.15.89","DOIUrl":"https://doi.org/10.2140/involve.2022.15.89","url":null,"abstract":"We explore the properties of non-piecewise syndetic sets with positive upper density, which we call discordant, in countable amenable (semi)groups. Sets of this kind are involved in many questions of Ramsey theory and manifest the difference in complexity between the classical van der Waerden's theorem and Szemer'edi's theorem. We generalize and unify old constructions and obtain new results about these historically interesting sets. Here is a small sample of our results. $bullet$ We connect discordant sets to recurrence in dynamical systems, and in this setting we exhibit an intimate analogy between discordant sets and nowhere dense sets having positive measure. $bullet$ We introduce a wide-ranging generalization of the squarefree numbers, producing many examples of discordant sets in $mathbb{Z}$, $mathbb{Z}^d$, and the Heisenberg group. We develop a unified method to compute densities of these discordant sets. $bullet$ We show that, for any countable abelian group $G$, any F{o}lner sequence $Phi$ in $G$, and any $c in (0, 1)$, there exists a discordant set $A subseteq G$ with $d_Phi(A) = c$. Here $d_Phi$ denotes density along $Phi$. Along the way, we draw from various corners of mathematics, including classical Ramsey theory, ergodic theory, number theory, and topological and symbolic dynamics.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75224450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Planar binary trees in scattering amplitudes","authors":"Carlos R. Mafra","doi":"10.4171/205-1/6","DOIUrl":"https://doi.org/10.4171/205-1/6","url":null,"abstract":"These notes are a written version of my talk given at the CARMA workshop in June 2017, with some additional material. I presented a few concepts that have recently been used in the computation of tree-level scattering amplitudes (mostly using pure spinor methods but not restricted to it) in a context that could be of interest to the combinatorics community. In particular, I focused on the appearance of {it planar binary trees} in scattering amplitudes and presented some curious identities obeyed by related objects, some of which are known to be true only via explicit examples.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88900918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karola M'esz'aros, Linus Setiabrata, Avery St. Dizier
{"title":"An orthodontia formula for Grothendieck polynomials","authors":"Karola M'esz'aros, Linus Setiabrata, Avery St. Dizier","doi":"10.1090/tran/8529","DOIUrl":"https://doi.org/10.1090/tran/8529","url":null,"abstract":"We give a new operator formula for Grothendieck polynomials that generalizes Magyar's Demazure operator formula for Schubert polynomials. Unlike the usual recursive definition of Grothendieck polynomials, the new formula is ascending in degree. Our proofs are purely combinatorial, contrasting with the geometric and representation theoretic tools used by Magyar for his operator formula for Schubert polynomials. Additionally, our approach yields a new proof of Magyar's formula.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85766205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Set-valued domino tableaux and shifted set-valued domino tableaux","authors":"Florence Maas-Gari'epy, Rebecca Patrias","doi":"10.2140/involve.2020.13.721","DOIUrl":"https://doi.org/10.2140/involve.2020.13.721","url":null,"abstract":"We prove K-theoretic and shifted K-theoretic analogues of the bijection of Stanton and White between domino tableaux and pairs of semistandard tableaux. As a result, we obtain product formulas for pairs of stable Grothendieck polynomials and pairs of K-theoretic Q-Schur functions.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73810138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simplicial homeomorphs and trace-bounded hypergraphs","authors":"J. Long, Bhargav P. Narayanan, Corrine Yap","doi":"10.19086/da.36647","DOIUrl":"https://doi.org/10.19086/da.36647","url":null,"abstract":"Our first main result is a uniform bound, in every dimension $k in mathbb N$, on the topological Turan numbers of $k$-dimensional simplicial complexes: for each $k in mathbb N$, there is a $lambda_k ge k^{-2k^2}$ such that for any $k$-complex $mathcal{S}$, every $k$-complex on $n ge n_0(mathcal{S})$ vertices with at least $n^{k+1 - lambda_k}$ facets contains a homeomorphic copy of $mathcal{S}$. This was previously known only in dimensions one and two, both by highly dimension-specific arguments: the existence of $lambda_1$ is a result of Mader from 1967, and the existence of $lambda_2$ was suggested by Linial in 2006 and recently proved by Keevash-Long-Narayanan-Scott. We deduce this geometric fact from a purely combinatorial result about trace-bounded hypergraphs, where an $r$-partite $r$-graph $H$ with partite classes $V_1, V_2, dots, V_r$ is said to be $d$-trace-bounded if for each $2 le i le r$, all the vertices of $V_i$ have degree at most $d$ in the trace of $H$ on $V_1 cup V_2 cup dots cup V_i$. Our second main result is the following estimate for the Turan numbers of degenerate trace-bounded hypergraphs: for all $r ge 2$ and $dinmathbb N$, there is an $alpha_{r,d} ge (5rd)^{1-r}$ such that for any $d$-trace-bounded $r$-partite $r$-graph $H$, every $r$-graph on $n ge n_0(H)$ vertices with at least $n^{r - alpha_{r,d}}$ edges contains a copy of $H$. This strengthens a result of Conlon-Fox-Sudakov from 2009 who showed that such a bound holds for $r$-partite $r$-graphs $H$ satisfying the stronger hypothesis that the vertex-degrees in all but one of its partite classes are bounded (in $H$, as opposed to in its traces).","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"205 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77040018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}