ArXiv最新文献

筛选
英文 中文
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. 脑肿瘤分割(BraTS METS)挑战2023:治疗前MRI上的脑转移分割。
ArXiv Pub Date : 2024-12-09
Ahmed W Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Rachit Saluja, Nader Ashraf, Nazanin Maleki, Leon Jekel, Nikolay Yordanov, Pascal Fehringer, Athanasios Gkampenis, Raisa Amiruddin, Amirreza Manteghinejad, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Sanjay Aneja, Syed Muhammad Anwar, Timothy Bergquist, Veronica Chiang, Verena Chung, Gian Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Keyvan Farahani, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Anahita Fathi Kazerooni, Florian Kofler, Kiril Krantchev, Dominic LaBella, Koen Van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Zeke Meier, Bjoern H Menze, Harrison Moy, Klara Osenberg, Marie Piraud, Zachary Reitman, Russell Takeshi Shinohara, Chunhao Wang, Benedikt Wiestler, Walter Wiggins, Umber Shafique, Klara Willms, Arman Avesta, Khaled Bousabarah, Satrajit Chakrabarty, Nicolo Gennaro, Wolfgang Holler, Manpreet Kaur, Pamela LaMontagne, MingDe Lin, Jan Lost, Daniel S Marcus, Ryan Maresca, Sarah Merkaj, Gabriel Cassinelli Pedersen, Marc von Reppert, Aristeidis Sotiras, Oleg Teytelboym, Niklas Tillmans, Malte Westerhoff, Ayda Youssef, Devon Godfrey, Scott Floyd, Andreas Rauschecker, Javier Villanueva-Meyer, Irada Pflüger, Jaeyoung Cho, Martin Bendszus, Gianluca Brugnara, Justin Cramer, Gloria J Guzman Perez-Carillo, Derek R Johnson, Anthony Kam, Benjamin Yin Ming Kwan, Lillian Lai, Neil U Lall, Fatima Memon, Mark Krycia, Satya Narayana Patro, Bojan Petrovic, Tiffany Y So, Gerard Thompson, Lei Wu, E Brooke Schrickel, Anu Bansal, Frederik Barkhof, Cristina Besada, Sammy Chu, Jason Druzgal, Alexandru Dusoi, Luciano Farage, Fabricio Feltrin, Amy Fong, Steve H Fung, R Ian Gray, Ichiro Ikuta, Michael Iv, Alida A Postma, Amit Mahajan, David Joyner, Chase Krumpelman, Laurent Letourneau-Guillon, Christie M Lincoln, Mate E Maros, Elka Miller, Fanny Esther A Morón, Esther A Nimchinsky, Ozkan Ozsarlak, Uresh Patel, Saurabh Rohatgi, Atin Saha, Anousheh Sayah, Eric D Schwartz, Robert Shih, Mark S Shiroishi, Juan E Small, Manoj Tanwar, Jewels Valerie, Brent D Weinberg, Matthew L White, Robert Young, Vahe M Zohrabian, Aynur Azizova, Melanie Maria Theresa Brüßeler, Mohanad Ghonim, Mohamed Ghonim, Abdullah Okar, Luca Pasquini, Yasaman Sharifi, Gagandeep Singh, Nico Sollmann, Theodora Soumala, Mahsa Taherzadeh, Philipp Vollmuth, Martha Foltyn-Dumitru, Ajay Malhotra, Aly H Abayazeed, Francesco Dellepiane, Philipp Lohmann, Víctor M Pérez-García, Hesham Elhalawani, Maria Correia de Verdier, Sanaria Al-Rubaiey, Rui Duarte Armindo, Kholod Ashraf, Moamen M Asla, Mohamed Badawy, Jeroen Bisschop, Nima Broomand Lomer, Jan Bukatz, Jim Chen, Petra Cimflova, Felix Corr, Alexis Crawley, Lisa Deptula, Tasneem Elakhdar, Islam H Shawali, Shahriar Faghani, Alexandra Frick, Vaibhav Gulati, Muhammad Ammar Haider, Fátima Hierro, Rasmus Holmboe Dahl, Sarah Maria Jacobs, Kuang-Chun Jim Hsieh, Sedat G Kandemirli, Katharina Kersting, Laura Kida, Sofia Kollia, Ioannis Koukoulithras, Xiao Li, Ahmed Abouelatta, Aya Mansour, Ruxandra-Catrinel Maria-Zamfirescu, Marcela Marsiglia, Yohana Sarahi Mateo-Camacho, Mark McArthur, Olivia McDonnell, Maire McHugh, Mana Moassefi, Samah Mostafa Morsi, Alexander Munteanu, Khanak K Nandolia, Syed Raza Naqvi, Yalda Nikanpour, Mostafa Alnoury, Abdullah Mohamed Aly Nouh, Francesca Pappafava, Markand D Patel, Samantha Petrucci, Eric Rawie, Scott Raymond, Borna Roohani, Sadeq Sabouhi, Laura M Sanchez-Garcia, Zoe Shaked, Pokhraj P Suthar, Talissa Altes, Edvin Isufi, Yaseen Dhemesh, Jaime Gass, Jonathan Thacker, Abdul Rahman Tarabishy, Benjamin Turner, Sebastiano Vacca, George K Vilanilam, Daniel Warren, David Weiss, Fikadu Worede, Sara Yousry, Wondwossen Lerebo, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Katherine E Evan Link, Evan Calabrese, Nourel Hoda Tahon, Ayman Nada, Yuri S Velichko, Spyridon Bakas, Jeffrey D Rudie, Mariam Aboian
{"title":"The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI.","authors":"Ahmed W Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Rachit Saluja, Nader Ashraf, Nazanin Maleki, Leon Jekel, Nikolay Yordanov, Pascal Fehringer, Athanasios Gkampenis, Raisa Amiruddin, Amirreza Manteghinejad, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Sanjay Aneja, Syed Muhammad Anwar, Timothy Bergquist, Veronica Chiang, Verena Chung, Gian Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Keyvan Farahani, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Anahita Fathi Kazerooni, Florian Kofler, Kiril Krantchev, Dominic LaBella, Koen Van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Zeke Meier, Bjoern H Menze, Harrison Moy, Klara Osenberg, Marie Piraud, Zachary Reitman, Russell Takeshi Shinohara, Chunhao Wang, Benedikt Wiestler, Walter Wiggins, Umber Shafique, Klara Willms, Arman Avesta, Khaled Bousabarah, Satrajit Chakrabarty, Nicolo Gennaro, Wolfgang Holler, Manpreet Kaur, Pamela LaMontagne, MingDe Lin, Jan Lost, Daniel S Marcus, Ryan Maresca, Sarah Merkaj, Gabriel Cassinelli Pedersen, Marc von Reppert, Aristeidis Sotiras, Oleg Teytelboym, Niklas Tillmans, Malte Westerhoff, Ayda Youssef, Devon Godfrey, Scott Floyd, Andreas Rauschecker, Javier Villanueva-Meyer, Irada Pflüger, Jaeyoung Cho, Martin Bendszus, Gianluca Brugnara, Justin Cramer, Gloria J Guzman Perez-Carillo, Derek R Johnson, Anthony Kam, Benjamin Yin Ming Kwan, Lillian Lai, Neil U Lall, Fatima Memon, Mark Krycia, Satya Narayana Patro, Bojan Petrovic, Tiffany Y So, Gerard Thompson, Lei Wu, E Brooke Schrickel, Anu Bansal, Frederik Barkhof, Cristina Besada, Sammy Chu, Jason Druzgal, Alexandru Dusoi, Luciano Farage, Fabricio Feltrin, Amy Fong, Steve H Fung, R Ian Gray, Ichiro Ikuta, Michael Iv, Alida A Postma, Amit Mahajan, David Joyner, Chase Krumpelman, Laurent Letourneau-Guillon, Christie M Lincoln, Mate E Maros, Elka Miller, Fanny Esther A Morón, Esther A Nimchinsky, Ozkan Ozsarlak, Uresh Patel, Saurabh Rohatgi, Atin Saha, Anousheh Sayah, Eric D Schwartz, Robert Shih, Mark S Shiroishi, Juan E Small, Manoj Tanwar, Jewels Valerie, Brent D Weinberg, Matthew L White, Robert Young, Vahe M Zohrabian, Aynur Azizova, Melanie Maria Theresa Brüßeler, Mohanad Ghonim, Mohamed Ghonim, Abdullah Okar, Luca Pasquini, Yasaman Sharifi, Gagandeep Singh, Nico Sollmann, Theodora Soumala, Mahsa Taherzadeh, Philipp Vollmuth, Martha Foltyn-Dumitru, Ajay Malhotra, Aly H Abayazeed, Francesco Dellepiane, Philipp Lohmann, Víctor M Pérez-García, Hesham Elhalawani, Maria Correia de Verdier, Sanaria Al-Rubaiey, Rui Duarte Armindo, Kholod Ashraf, Moamen M Asla, Mohamed Badawy, Jeroen Bisschop, Nima Broomand Lomer, Jan Bukatz, Jim Chen, Petra Cimflova, Felix Corr, Alexis Crawley, Lisa Deptula, Tasneem Elakhdar, Islam H Shawali, Shahriar Faghani, Alexandra Frick, Vaibhav Gulati, Muhammad Ammar Haider, Fátima Hierro, Rasmus Holmboe Dahl, Sarah Maria Jacobs, Kuang-Chun Jim Hsieh, Sedat G Kandemirli, Katharina Kersting, Laura Kida, Sofia Kollia, Ioannis Koukoulithras, Xiao Li, Ahmed Abouelatta, Aya Mansour, Ruxandra-Catrinel Maria-Zamfirescu, Marcela Marsiglia, Yohana Sarahi Mateo-Camacho, Mark McArthur, Olivia McDonnell, Maire McHugh, Mana Moassefi, Samah Mostafa Morsi, Alexander Munteanu, Khanak K Nandolia, Syed Raza Naqvi, Yalda Nikanpour, Mostafa Alnoury, Abdullah Mohamed Aly Nouh, Francesca Pappafava, Markand D Patel, Samantha Petrucci, Eric Rawie, Scott Raymond, Borna Roohani, Sadeq Sabouhi, Laura M Sanchez-Garcia, Zoe Shaked, Pokhraj P Suthar, Talissa Altes, Edvin Isufi, Yaseen Dhemesh, Jaime Gass, Jonathan Thacker, Abdul Rahman Tarabishy, Benjamin Turner, Sebastiano Vacca, George K Vilanilam, Daniel Warren, David Weiss, Fikadu Worede, Sara Yousry, Wondwossen Lerebo, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Katherine E Evan Link, Evan Calabrese, Nourel Hoda Tahon, Ayman Nada, Yuri S Velichko, Spyridon Bakas, Jeffrey D Rudie, Mariam Aboian","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse datasets and identified common errors, facilitating the translation of BM segmentation across varied clinical environments and providing personalized volumetric reports to patients undergoing BM treatment.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10113860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. 解开图像统计与人类感知之间的联系。
ArXiv Pub Date : 2024-12-02
Alexander Hepburn, Valero Laparra, Raúl Santos-Rodriguez, Jesús Malo
{"title":"Image Statistics Predict the Sensitivity of Perceptual Quality Metrics.","authors":"Alexander Hepburn, Valero Laparra, Raúl Santos-Rodriguez, Jesús Malo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Previously, Barlow and Attneave hypothesised a link between biological vision and information maximisation. Following Shannon, information was defined using the probability of natural images. Several physiological and psychophysical phenomena have been derived from principles like info-max, efficient coding, or optimal denoising. However, it remains unclear how this link is expressed in mathematical terms from image probability. Classical derivations were subjected to strong assumptions on the probability models and on the behaviour of the sensors. Moreover, the direct evaluation of the hypothesis was limited by the inability of classical image models to deliver accurate estimates of the probability. Here, we directly evaluate image probabilities using a generative model for natural images, and analyse how probability-related factors can be combined to predict the sensitivity of state-of-the-art subjective image quality metrics, a proxy for human perception. We use information theory and regression analysis to find a simple model that when combining just two probability-related factors achieves 0.77 correlation with subjective metrics. This probability-based model is validated in two ways: through direct comparison with the opinion of real observers in a subjective quality experiment, and by reproducing basic trends of classical psychophysical facts such as the Contrast Sensitivity Function, the Weber-law, and contrast masking.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9573197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). 脑肿瘤分割(BraTS)挑战2023:用于肿瘤分割的脑MR图像合成(BraSyn)。
ArXiv Pub Date : 2024-11-24
Hongwei Bran Li, Gian Marco Conte, Qingqiao Hu, Syed Muhammad Anwar, Florian Kofler, Ivan Ezhov, Koen van Leemput, Marie Piraud, Maria Diaz, Byrone Cole, Evan Calabrese, Jeff Rudie, Felix Meissen, Maruf Adewole, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Thomas Yu, Verena Chung, Timothy Bergquist, James Eddy, Jake Albrecht, Ujjwal Baid, Spyridon Bakas, Marius George Linguraru, Bjoern Menze, Juan Eugenio Iglesias, Benedikt Wiestler
{"title":"The Brain Tumor Segmentation (BraTS) Challenge 2023: <i>Brain MR Image Synthesis for Tumor Segmentation (BraSyn)</i>.","authors":"Hongwei Bran Li, Gian Marco Conte, Qingqiao Hu, Syed Muhammad Anwar, Florian Kofler, Ivan Ezhov, Koen van Leemput, Marie Piraud, Maria Diaz, Byrone Cole, Evan Calabrese, Jeff Rudie, Felix Meissen, Maruf Adewole, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Thomas Yu, Verena Chung, Timothy Bergquist, James Eddy, Jake Albrecht, Ujjwal Baid, Spyridon Bakas, Marius George Linguraru, Bjoern Menze, Juan Eugenio Iglesias, Benedikt Wiestler","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ab/8e/nihpp-2305.09011v5.PMC10441440.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matching Patients to Clinical Trials with Large Language Models. 用大型语言模型将患者与临床试验相匹配。
ArXiv Pub Date : 2024-11-18
Qiao Jin, Zifeng Wang, Charalampos S Floudas, Fangyuan Chen, Changlin Gong, Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, Zhiyong Lu
{"title":"Matching Patients to Clinical Trials with Large Language Models.","authors":"Qiao Jin, Zifeng Wang, Charalampos S Floudas, Fangyuan Chen, Changlin Gong, Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, Zhiyong Lu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1,015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TriaGPT.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial layer fluidization by curvature-induced unjamming. 由曲率引起的上皮层流化。
ArXiv Pub Date : 2024-11-04
Margherita De Marzio, Amit Das, Jeffrey J Fredberg, Dapeng Bi
{"title":"Epithelial layer fluidization by curvature-induced unjamming.","authors":"Margherita De Marzio, Amit Das, Jeffrey J Fredberg, Dapeng Bi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The transition of an epithelial layer from a stationary, quiescent state to a highly migratory, dynamic state is required for wound healing, development, and regeneration. This transition, known as the unjamming transition (UJT), is responsible for epithelial fluidization and collective migration. Previous theoretical models have primarily focused on the UJT in flat epithelial layers, neglecting the effects of strong surface curvature characteristic of the epithelium in vivo. In this study, we investigate the role of surface curvature on tissue plasticity and cellular migration using a vertex model embedded on a spherical surface. Our findings reveal that increasing curvature promotes the UJT by reducing the energy barriers to cellular rearrangements. Higher curvature favors cell intercalation, mobility, and self-diffusivity, resulting in epithelial structures that are malleable and migratory when small, but become more rigid and stationary as they grow. As such, the greater is the curvature the stronger becomes the tendency for curvature-induced unjamming to emerge as a novel mechanism promoting epithelial layer fluidization, malleability, and remodeling. Conversely, the lesser the curvature, as in tissue development and growth, the stronger becomes the tendency for jamming to emerge as a mechanism of progressive epithelial layer solidification and stabilization. Together, these results provide a conceptual framework to better understand how cell shape, cell propulsion, and tissue geometry contribute to tissue malleability, remodeling, and stabilization.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9608649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning temporal relationships between symbols with Laplace Neural Manifolds. 时间RL的基础。
ArXiv Pub Date : 2024-09-22
Marc W Howard, Zahra Gh Esfahani, Bao Le, Per B Sederberg
{"title":"Learning temporal relationships between symbols with Laplace Neural Manifolds.","authors":"Marc W Howard, Zahra Gh Esfahani, Bao Le, Per B Sederberg","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Firing across populations of neurons in many regions of the mammalian brain maintains a temporal memory, a neural timeline of the recent past. Behavioral results demonstrate that people can both remember the past and anticipate the future over an analogous internal timeline. This paper presents a mathematical framework for building this timeline of the future. We assume that the input to the system is a time series of symbols-sparse tokenized representations of the present-in continuous time. The goal is to record pairwise temporal relationships between symbols over a wide range of time scales. We assume that the brain has access to a temporal memory in the form of the real Laplace transform. Hebbian associations with a diversity of synaptic time scales are formed between the past timeline and the present symbol. The associative memory stores the convolution between the past and the present. Knowing the temporal relationship between the past and the present allows one to infer relationships between the present and the future. With appropriate normalization, this Hebbian associative matrix can store a Laplace successor representation and a Laplace predecessor representation from which measures of temporal contingency can be evaluated. The diversity of synaptic time constants allows for learning of non-stationary statistics as well as joint statistics between triplets of symbols. This framework synthesizes a number of recent neuroscientific findings including results from dopamine neurons in the mesolimbic forebrain.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9113356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Genotype-Phenotype Maps Reveal Mutational Robustness of RNA Folding, Spin Glasses, and Quantum Circuits. 概率基因型表型图谱揭示了RNA折叠、自旋玻璃和量子电路的突变稳健性。
ArXiv Pub Date : 2024-08-22
Anna Sappington, Vaibhav Mohanty
{"title":"Probabilistic Genotype-Phenotype Maps Reveal Mutational Robustness of RNA Folding, Spin Glasses, and Quantum Circuits.","authors":"Anna Sappington, Vaibhav Mohanty","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recent studies of genotype-phenotype (GP) maps have reported universally enhanced phenotypic robustness to genotype mutations, a feature essential to evolution. Virtually all of these studies make a simplifying assumption that each genotype-represented as a sequence-maps deterministically to a single phenotype, such as a discrete structure. Here, we introduce probabilistic genotype-phenotype (PrGP) maps, where each genotype maps to a vector of phenotype probabilities, as a more realistic and universal language for investigating robustness in a variety of physical, biological, and computational systems. We study three model systems to show that PrGP maps offer a generalized framework which can handle uncertainty emerging from various physical sources: (1) thermal fluctuation in RNA folding, (2) external field disorder in spin glass ground state finding, and (3) superposition and entanglement in quantum circuits, which are realized experimentally on IBM quantum computers. In all three cases, we observe a novel biphasic robustness scaling which is enhanced relative to random expectation for more frequent phenotypes and approaches random expectation for less frequent phenotypes. We derive an analytical theory for the behavior of PrGP robustness, and we demonstrate that the theory is highly predictive of empirical robustness.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9882568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of energy landscape analysis of resting-state functional MRI data. 静息状态功能MRI数据能量景观分析的可靠性。
ArXiv Pub Date : 2024-08-20
Pitambar Khanra, Johan Nakuci, Sarah Muldoon, Takamitsu Watanabe, Naoki Masuda
{"title":"Reliability of energy landscape analysis of resting-state functional MRI data.","authors":"Pitambar Khanra, Johan Nakuci, Sarah Muldoon, Takamitsu Watanabe, Naoki Masuda","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e., within-participant reliability) than across different sets of sessions from different participants (i.e., between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10143764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dynamic Sensorium competition for predicting large-scale mouse visual cortex activity from videos. 从视频中预测大规模小鼠视觉皮层活动的动态感官竞赛。
ArXiv Pub Date : 2024-07-12
Polina Turishcheva, Paul G Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder, Yongrong Qiu, Konstantin F Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, Andreas S Tolias, Fabian H Sinz, Alexander S Ecker
{"title":"The Dynamic Sensorium competition for predicting large-scale mouse visual cortex activity from videos.","authors":"Polina Turishcheva, Paul G Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla Ponder, Yongrong Qiu, Konstantin F Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, Andreas S Tolias, Fabian H Sinz, Alexander S Ecker","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding how biological visual systems process information is challenging due to the complex nonlinear relationship between neuronal responses and high-dimensional visual input. Artificial neural networks have already improved our understanding of this system by allowing computational neuroscientists to create predictive models and bridge biological and machine vision. During the Sensorium 2022 competition, we introduced benchmarks for vision models with static input (i.e. images). However, animals operate and excel in dynamic environments, making it crucial to study and understand how the brain functions under these conditions. Moreover, many biological theories, such as predictive coding, suggest that previous input is crucial for current input processing. Currently, there is no standardized benchmark to identify state-of-the-art dynamic models of the mouse visual system. To address this gap, we propose the Sensorium 2023 Benchmark Competition with dynamic input (https://www.sensorium-competition.net/). This competition includes the collection of a new large-scale dataset from the primary visual cortex of ten mice, containing responses from over 78,000 neurons to over 2 hours of dynamic stimuli per neuron. Participants in the main benchmark track will compete to identify the best predictive models of neuronal responses for dynamic input (i.e. video). We will also host a bonus track in which submission performance will be evaluated on out-of-domain input, using withheld neuronal responses to dynamic input stimuli whose statistics differ from the training set. Both tracks will offer behavioral data along with video stimuli. As before, we will provide code, tutorials, and strong pre-trained baseline models to encourage participation. We hope this competition will continue to strengthen the accompanying Sensorium benchmarks collection as a standard tool to measure progress in large-scale neural system identification models of the entire mouse visual hierarchy and beyond.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/e8/nihpp-2305.19654v1.PMC10312815.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual benchmarking study of facial forgery and facial forensics 面部伪造和面部取证的双重基准研究
ArXiv Pub Date : 2024-07-05 DOI: 10.1049/cit2.12362
Minh Tam Pham, T. T. Huynh, Vinh Tong, T. Nguyen, T. Nguyen, Hongzhi Yin, Q. Nguyen
{"title":"A dual benchmarking study of facial forgery and facial forensics","authors":"Minh Tam Pham, T. T. Huynh, Vinh Tong, T. Nguyen, T. Nguyen, Hongzhi Yin, Q. Nguyen","doi":"10.1049/cit2.12362","DOIUrl":"https://doi.org/10.1049/cit2.12362","url":null,"abstract":"In recent years, visual facial forgery has reached a level of sophistication that humans cannot identify fraud, which poses a significant threat to information security. A wide range of malicious applications have emerged, such as deepfake, fake news, defamation or blackmailing of celebrities, impersonation of politicians in political warfare, and the spreading of rumours to attract views. As a result, a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend. However, there is no comprehensive, fair, and unified performance evaluation to enlighten the community on best performing methods. The authors present a systematic benchmark beyond traditional surveys that provides in‐depth insights into facial forgery and facial forensics, grounding on robustness tests such as contrast, brightness, noise, resolution, missing information, and compression. The authors also provide a practical guideline of the benchmarking results, to determine the characteristics of the methods that serve as a comparative reference in this never‐ending war between measures and countermeasures. The authors’ source code is open to the public.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141674328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信