Application of Spherical Convolutional Neural Networks to Image Reconstruction and Denoising in Nuclear Medicine.

ArXiv Pub Date : 2025-01-30
Amirreza Hashemi, Yuemeng Feng, Arman Rahmim, Hamid Sabet
{"title":"Application of Spherical Convolutional Neural Networks to Image Reconstruction and Denoising in Nuclear Medicine.","authors":"Amirreza Hashemi, Yuemeng Feng, Arman Rahmim, Hamid Sabet","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates use of equivariant neural networks as efficient and high-performance frameworks for image reconstruction and denoising in nuclear medicine. Our work aims to tackle limitations of conventional Convolutional Neural Networks (CNNs), which require significant training. We investigated equivariant networks, aiming to reduce CNN's dependency on specific training sets. Specifically, we implemented and evaluated equivariant spherical CNNs (SCNNs) for 2- and 3-dimensional medical imaging problems. Our results demonstrate superior quality and computational efficiency of SCNNs in both image reconstruction and denoising benchmark problems. Furthermore, we propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools, enhancing the outcomes while reducing reliance on the training set. Across all cases, we observed significant decrease in computational cost by leveraging the inherent inclusion of equivariant representatives while achieving the same or higher quality of image processing using SCNNs compared to CNNs. Additionally, we explore the potential of SCNNs for broader tomography applications, particularly those requiring rotationally variant representation.</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates use of equivariant neural networks as efficient and high-performance frameworks for image reconstruction and denoising in nuclear medicine. Our work aims to tackle limitations of conventional Convolutional Neural Networks (CNNs), which require significant training. We investigated equivariant networks, aiming to reduce CNN's dependency on specific training sets. Specifically, we implemented and evaluated equivariant spherical CNNs (SCNNs) for 2- and 3-dimensional medical imaging problems. Our results demonstrate superior quality and computational efficiency of SCNNs in both image reconstruction and denoising benchmark problems. Furthermore, we propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools, enhancing the outcomes while reducing reliance on the training set. Across all cases, we observed significant decrease in computational cost by leveraging the inherent inclusion of equivariant representatives while achieving the same or higher quality of image processing using SCNNs compared to CNNs. Additionally, we explore the potential of SCNNs for broader tomography applications, particularly those requiring rotationally variant representation.

Abstract Image

Abstract Image

Abstract Image

用于数据高效和高性能医学图像处理的等变球面CNN。
这项工作强调了等变网络作为层析成像应用的高效和高性能方法的重要性。我们的研究建立在卷积神经网络(CNNs)的局限性之上,卷积神经网络在各种医学成像系统的后处理中显示出了前景。然而,传统细胞神经网络的效率在很大程度上依赖于一个不变的、适当的训练集。为了解决这个问题,在本研究中,我们引入了一个等变网络,旨在减少CNN对特定训练集的依赖。我们评估了等变细胞神经网络对球形信号在断层医学成像问题中的功效。我们的结果证明了球形细胞神经网络(SCNN)在去噪和重建基准问题方面具有卓越的质量和计算效率。此外,我们提出了一种新的方法来使用SCNN作为传统图像重建工具的补充,在减少对训练集的依赖的同时增强结果。在所有情况下,我们观察到计算成本显著降低,同时与细胞神经网络相比,使用SCNN保持相同或更高的图像处理质量。此外,我们还探索了该网络在更广泛的断层扫描应用中的潜力,特别是那些需要全向表示的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信