Katarzyna Kaczmarek, Jerzy Więckiewicz, Ivo Que, Adrianna Gałuszka-Bulaga, Alan Chan, Maciej Siedlar, Jarek Baran
{"title":"Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer","authors":"Katarzyna Kaczmarek, Jerzy Więckiewicz, Ivo Que, Adrianna Gałuszka-Bulaga, Alan Chan, Maciej Siedlar, Jarek Baran","doi":"10.2478/aite-2024-0002","DOIUrl":"https://doi.org/10.2478/aite-2024-0002","url":null,"abstract":"Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karol Gostomczyk, Jędrzej Borowczak, Marta Siekielska-Domanowska, Krzysztof Szczerbowski, Mateusz Maniewski, Mariusz Dubiel, Łukasz Szylberg, Magdalena Bodnar
{"title":"Mechanisms of SARS-CoV-2 Placental Transmission","authors":"Karol Gostomczyk, Jędrzej Borowczak, Marta Siekielska-Domanowska, Krzysztof Szczerbowski, Mateusz Maniewski, Mariusz Dubiel, Łukasz Szylberg, Magdalena Bodnar","doi":"10.2478/aite-2024-0001","DOIUrl":"https://doi.org/10.2478/aite-2024-0001","url":null,"abstract":"Abstract The widespread occurrence of SARS-CoV-2 infections and the diverse range of symptoms have placed significant strain on healthcare systems worldwide. Pregnancy has also been affected by COVID-19, with an increased risk of complications and unfavorable outcomes for expectant mothers. Multiple studies indicate that SARS-CoV-2 can infiltrate the placenta, breach its protective barrier, and infect the fetus. Although the precise mechanisms of intrauterine transmission remain unclear, factors such as perinatal infection, macrophages, sexual intercourse, and the virus’ interaction with host angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) proteins appear to play a role in this process. The integrity of the placental barrier fluctuates throughout pregnancy and appears to influence the likelihood of fetal transmission. The expression of placental cell receptors, like ACE2, changes during pregnancy and in response to placental damage. However, due to the consistent presence of others, such as NRP-1, SARS-CoV-2 may potentially enter the fetus at different stages of pregnancy. NRP-1 is also found in macrophages, implicating maternal macrophages and Hofbauer cells as potential routes for viral transmission. Our current understanding of SARS-CoV-2's vertical transmission pathways remains limited. Some researchers question the ACE2-associated transmission model due to the relatively low expression of ACE2 in the placenta. Existing studies investigating perinatal transmission and the impact of sexual intercourse have either involved small sample sizes or lacked statistical significance. This review aims to explore the current state of knowledge regarding the potential mechanisms of COVID-19 vertical transmission, identifying areas where further research is needed to fill the gaps in our understanding.","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139155567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Niezgoda, Grzegorz Biegański, Jacek Wachowiak, Jarosław Czarnota, Krzysztof Siemionow, Ahlke Heydemann, Anna Ziemiecka, Maria H. Sikorska, Katarzyna Bożyk, Maria Siemionow
{"title":"Assessment of Motor Unit Potentials Duration as the Biomarker of DT-DEC01 Cell Therapy Efficacy in Duchenne Muscular Dystrophy Patients up to 12 Months After Systemic–Intraosseous Administration","authors":"Adam Niezgoda, Grzegorz Biegański, Jacek Wachowiak, Jarosław Czarnota, Krzysztof Siemionow, Ahlke Heydemann, Anna Ziemiecka, Maria H. Sikorska, Katarzyna Bożyk, Maria Siemionow","doi":"10.1007/s00005-023-00691-y","DOIUrl":"10.1007/s00005-023-00691-y","url":null,"abstract":"<div><p>Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by mutations in the dystrophin gene, leading to muscle degeneration and wasting. Electromyography (EMG) is an objective electrophysiological biomarker of muscle fiber function in muscular dystrophies. A novel, DT-DEC01 therapy, consisting of Dystrophin Expressing Chimeric (DEC) cells created by fusing allogeneic myoblasts from normal donors with autologous myoblasts from DMD-affected patients, was assessed for safety and preliminary efficacy in boys of age 6–15 years old (<i>n</i> = 3). Assessments included EMG testing of selected muscles of upper (deltoideus, biceps brachii) and lower (rectus femoris and gastrocnemius) extremities at the screening visit and at 3, 6, and 12 months following systemic–intraosseous administration of a single low dose of DT-DEC01 therapy (Bioethics Committee approval no. 46/2019). No immunosuppression was administered. Safety of DT-DEC01 was confirmed by the lack of therapy-related Adverse Events or Serious Adverse Events up to 22 months following DT-DEC01 administration. EMG of selected muscles of both, ambulatory and non-ambulatory patients confirmed preliminary efficacy of DT-DEC01 therapy by an increase in motor unit potentials (MUP) duration, amplitudes, and polyphasic MUPs at 12 months. This study confirmed EMG as a reliable and objective biomarker of functional assessment in DMD patients after intraosseous administration of the novel DT-DEC01 therapy.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00691-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138298191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junying Qiao, Shanshan Guo, Xianjie Huang, Luodan Zhang, Fan Li, Yazhen Fan
{"title":"Expression of Angiopoietin-2 in Lung Tissue of Juvenile SD Rats with Lipopolysaccharide-Induced Acute Lung Injury and the Role of Ulinastatin","authors":"Junying Qiao, Shanshan Guo, Xianjie Huang, Luodan Zhang, Fan Li, Yazhen Fan","doi":"10.1007/s00005-023-00688-7","DOIUrl":"10.1007/s00005-023-00688-7","url":null,"abstract":"<div><p>This study aimed to observe the expression of angiopoietin-2 (Ang-2) in the lung tissue of juvenile SD rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to clarify the role of ulinastatin (UTI). Ninety 18–21-day-old juvenile SD male rats were randomly divided into five groups (<i>n</i> = 18). ALI rat model was established by intraperitoneal injection of LPS (LPS 10 mg/kg), while the control group was given the same dose of normal saline. The UTI intervention group was given the injection of UTI (5000 U/mL) immediately after the injection of LPS, which was divided into UTI low-dose group (LPS + 5 ml/kg UTI), UTI medium-dose group (LPS + 10 ml/kg UTI), and UTI high-dose group (LPS + 20 ml/kg UTI).The respiratory status of each group of rats was observed, and six rats were randomly selected to be killed in each group at 6, 12, and 24 h, and the lung tissues were dissected and retained. The pathological changes of the lung tissues were observed by hematoxylin–eosin (HE) staining, the expression levels and locations of Ang-2 and vascular endothelial growth factor (VEGF) in lung tissue were observed by immunohistochemical staining, and the expressions of genes and proteins of Ang-2 and VEGF were detected by quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Three hours after intraperitoneal injection, rats in the model group developed shortness of breath and the developed respiratory distress progressed over time. The lung pathological changes in the model group were obvious compared with those in the control group, and gradually worsened with time, and the pathological changes of lung in the rats in the UTI intervention group were reduced compared with those in the model group. At different time points, the expressions of Ang-2 and VEGF in the lung tissue of rats in the model group were higher than those in the control group, and were lower in the UTI intervention group than those in the model group. The expressions of Ang-2 and VEGF protein were lower in the low-dose group of UTI group than those in the high-dose group of UTI group at different time points (<i>P</i> < 0.05), and the expressions of Ang-2 and VEGF protein in the low-dose group of UTI were significantly lower than those in the medium-dose group at 12 h and 24 h (<i>P</i> < 0.05). The expression of Ang-2 was increased in the lung tissue of juvenile SD rats with LPS-induced ALI, and was associated with the degree of lung injury. UTI might attenuate LPS-induced ALI by inhibiting the expression of Ang-2 in lung tissue, and the low dose was more obvious than the medium and high dose.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta
{"title":"Correction to: In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy","authors":"Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta","doi":"10.1007/s00005-023-00687-8","DOIUrl":"10.1007/s00005-023-00687-8","url":null,"abstract":"","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00687-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells","authors":"Chien-Chih Chiu, Kai-Chun Cheng, Yi-Hsiung Lin, Chen-Xi He, Yung-Ding Bow, Chia-Yang Li, Chang-Yi Wu, Hui-Min David Wang, Shwu-Jiuan Sheu","doi":"10.1007/s00005-023-00686-9","DOIUrl":"10.1007/s00005-023-00686-9","url":null,"abstract":"<div><p>Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs.</p><h3>Graphical Abstract</h3><p>Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.</p>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10165598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Production of Anti-FGF-2 Nanobody Using Pichia pastoris and Its Effect on Antiproliferation of Keratinocytes and Alleviation of Psoriasis","authors":"Zhenlong Zhou, Baixin Liao, Shengli Wang, Jian Tang, Hui Zhao, Mingjie Tong, Keting Li, Sheng Xiong","doi":"10.1007/s00005-023-00685-w","DOIUrl":"10.1007/s00005-023-00685-w","url":null,"abstract":"<div><p>Fibroblast growth factor 2 (FGF-2) is not only an angiogenic factor, but also a mitogen for epidermal keratinocytes. FGF-2 has been shown to be positively immunoreactive in the basal layer of psoriatic lesions. In previous work, we used the <i>Escherichia coli</i> (<i>E. coli</i>) expression system to biosynthesize a biologically active anti-FGF-2 nanobody (Nb) screened by phage display technology, but the low yield limited its clinical application. In this study, we aimed to increase the yield of anti-FGF-2 Nb, and evaluate its therapeutic potential for psoriasis by inhibiting FGF-2-mediated mitogenic signaling in psoriatic epidermal keratinocytes. We demonstrated a 16-fold improvement in the yield of anti-FGF-2 Nb produced in the <i>Pichia pastoris (P. pastoris)</i> compared to the <i> E. coli</i> expression system. In vitro, the FGF-2-induced HaCaT cell model (FHCM) was established to mimic the key feature of keratinocyte overproliferation in psoriasis. Anti-FGF-2 Nb was able to effectively inhibit the proliferation and migration of FHCM. In vivo, anti-FGF-2 Nb attenuated the severity of imiquimod (IMQ)-induced psoriatic lesions in mice, and also improved the inflammatory microenvironment by inhibiting the secretion of inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α), chemokines (CXCL1 and CCL20), and neutrophil infiltration in skin lesions. These were mainly related to the suppression of FGF-2-mediated mitogenic signaling in psoriatic keratinocytes. In conclusion, we have improved the production of anti-FGF-2 Nb and demonstrated the modality of attenuating the abnormal proliferative behavior of psoriatic keratinocytes by inhibiting FGF-2-mediated mitogenic signaling, which offers the possibility of treating psoriasis.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10481330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Cao, Sergey K. Efetov, Mingze He, Yu Fu, Narasimha M. Beeraka, Jin Zhang, Xinliang Zhang, Namitha Bannimath, Kuo Chen
{"title":"Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer","authors":"Yu Cao, Sergey K. Efetov, Mingze He, Yu Fu, Narasimha M. Beeraka, Jin Zhang, Xinliang Zhang, Namitha Bannimath, Kuo Chen","doi":"10.1007/s00005-023-00684-x","DOIUrl":"10.1007/s00005-023-00684-x","url":null,"abstract":"<div><p>In recent years, the incidence of colorectal cancer (CRC) and breast cancer (BC) has increased worldwide and caused a higher mortality rate due to the lack of selective anti-tumor therapies. Current chemotherapies and surgical interventions are significantly preferred modalities to treat CRC or BC in advanced stages but the prognosis for patients with advanced CRC and BC remains dismal. The immunotherapy technique of chimeric antigen receptor (CAR)-T cells has resulted in significant clinical outcomes when treating hematologic malignancies. The novel CAR-T therapy target antigens include GUCY2C, CLEC14A, CD26, TEM8/ANTXR1, PDPN, PTK7, PODXL, CD44, CD19, CD20, CD22, BCMA, GD2, Mesothelin, TAG-72, CEA, EGFR, B7H3, HER2, IL13Ra2, MUC1, EpCAM, PSMA, PSCA, NKG2D. The significant aim of this review is to explore the recently updated information pertinent to several novel targets of CAR-T for CRC, and BC. We vividly described the challenges of CAR-T therapies when treating CRC or BC. The immunosuppressive microenvironment of solid tumors, the shortage of tumor-specific antigens, and post-treatment side effects are the major hindrances to promoting the development of CAR-T cells. Several clinical trials related to CAR-T immunotherapy against CRC or BC have already been in progress. This review benefits academicians, clinicians, and clinical oncologists to explore more about the novel CAR-T targets and overcome the challenges during this therapy.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10358418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta
{"title":"In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy","authors":"Marta Śledź, Alicja Wojciechowska, Radosław Zagożdżon, Beata Kaleta","doi":"10.1007/s00005-023-00683-y","DOIUrl":"10.1007/s00005-023-00683-y","url":null,"abstract":"<div><p>Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of patient’s lymphocytes, their in vitro modification, and expansion and infusion back into patient’s bloodstream. This classical protocol is complex, time-consuming, and expensive. Those problems could be solved by successful protocols to produce CAR-T cells, but also CAR-natural killer cells or CAR macrophages, in situ, using viral platforms or non-viral delivery systems. Moreover, it was demonstrated that in situ CAR-T induction may be associated with reduced risk of the most common toxicities associated with CAR-T therapy, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and “on-target, off-tumor” toxicity. This review aims to summarize the current state-of-the-art and future perspectives for the in situ-produced CAR-T cells. Indeed, preclinical work in this area, including animal studies, raises hope for prospective translational development and validation in practical medicine of strategies for in situ generation of CAR-bearing immune effector cells.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00683-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10198896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jhon Jairo Calderon, Karol Prieto, Paola Lasso, Susana Fiorentino, Alfonso Barreto
{"title":"Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products","authors":"Jhon Jairo Calderon, Karol Prieto, Paola Lasso, Susana Fiorentino, Alfonso Barreto","doi":"10.1007/s00005-023-00681-0","DOIUrl":"10.1007/s00005-023-00681-0","url":null,"abstract":"<div><p>During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.</p></div>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00005-023-00681-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10162705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}