{"title":"Hybrid, Multiscale Numerical Simulations of the Equal Channel Angular Pressing (ECAP) using the Crystal Plasticity Theory","authors":"M. Wójcik","doi":"10.24425/amm.2023.146235","DOIUrl":"https://doi.org/10.24425/amm.2023.146235","url":null,"abstract":"The FEM simulations of the EcAP including real conditions of the process – the friction between the metal extruded and the die walls, as well as, the channels rounding, were done here in two scales – macro-and micro-. The macroscopic analyses were done for isotopic material with a non-linear hardening using the UMAT user material procedure. The pure Lagrangian approach was applied here. The stress, strains and their increments, as well as, the deformation gradient tensor were recorded for selected finite elements in each calculation step. The displacements obtained in the macroscopic FEM analysis are then used as the kinematic input for the polycrystalline structure. The dislocation slip was included as the source of the plastic deformation here for the face-centered cubic structure. The results obtained with the use of the crystal plasticity show the heterogeneous distribution of stress and strain within the material associated with the grains anisotropy. The results in both micro-and macro-scales are coincident. The FEM analyses show the potential of the application of the crystal plasticity approach for solving elastic-plastic problems including the material forming processes.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":"119 43","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of the Microstructure and Mechanical Properties of Brazing Joints between Niobium and 316L Stainless Steel using Silver-Copper-Palladium Filler","authors":"R. Wang, Lubei Liu, Zongheng xue, Teng Tan","doi":"10.24425/amm.2023.146232","DOIUrl":"https://doi.org/10.24425/amm.2023.146232","url":null,"abstract":"This paper introduces an approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavity helium jackets. The study takes advantage of good wettability of ag-Cu-Pd brazing alloy to suppress brittle Fe-nb intermetallic formation, hence improve the joints’ mechanical performance. The wettability of ag-Cu-Pd filler metal on niobium, the interface microstructure and mechanical properties of the transition joints were investigated. Two kinds of ag-Cu-Pd filler metals had been studied and wet well on the niobium, and the wettability of ag-31.5Cu-10Pd filler metal on niobium was better than ag-28Cu-20Pd filler metal. Microstructure characterization demonstrated the absence of brittle intermetallic layers in all of the joint interfaces. Mechanical properties of samples prepared with ag-31.5Cu-10Pd filler metal were also better than their peers made with ag-28Cu-20Pd filler metal both room temperature (300 K) and liquid nitrogen temperature (77 K). The transition joints displayed shear strengths of 356-375 MPa at 300 K and 440-457 MPa at 77 K, respectively. after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, the transition joints’ leak rates were all lower than 1.1×10 –11 mbar·L/s. Therefore, ag-Cu-Pd filler metal is applicable to high vacuum vessels used at cryogenic temperatures.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 12","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of the Heat Treatment Condition of the Base Material on the Microstructure and Mechanical Properties of 17-4PH Stainless Steel Electron Beam Welded Joints","authors":"","doi":"10.24425/amm.2023.146216","DOIUrl":"https://doi.org/10.24425/amm.2023.146216","url":null,"abstract":"","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 9","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of BaO and Li2O on Basic Characteristics of Mold Fluxes with Different Basicity","authors":"","doi":"10.24425/amm.2023.146208","DOIUrl":"https://doi.org/10.24425/amm.2023.146208","url":null,"abstract":"","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 14","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spark Plasma Sintered Mn-Al (Magnets) Production and Characterization with Experimental Design","authors":"C. B. Danışman, G. Goller","doi":"10.24425/amm.2023.146201","DOIUrl":"https://doi.org/10.24425/amm.2023.146201","url":null,"abstract":"mn-al alloys are important alloys due to their magnetic properties and have been identified as permanent magnets. This alloy possesses magnetic properties and can be manufactured at a relatively low cost. mn-al alloys could be an alternative to rare earth magnets and hard ferrites and have a promising future. in this study, the effects of sintering temperature, holding time and pressure on densification, average grain size and magnetic properties of the sPs-ed mn-al alloys were observed. However, with the different sintering parameters, the magnetic phase τ phase could be achieved. To obtain the τ phase, different annealing methods were tried, yet samples heated to 650°C and air cooled exhibited magnetic properties. This sample was selected from various sintering parameters due to its high density of 99% n6 (800°C – 300 sec – 60 mPa) and has an average grain size of 137±18.1 µm. The uniqueness of this work is that statistical approaches such as Taguchi design of experiment (Doe) and regression were used for optimization of the manufacturing process.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 9","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis of the Strength Properties of the Movable Connection","authors":"A. Dziwis, T. Tański, M. sroka, Śliwa, R. Dziwis","doi":"10.24425/amm.2023.146226","DOIUrl":"https://doi.org/10.24425/amm.2023.146226","url":null,"abstract":"The purpose of the paper was to design geometric models of the movable connection made of brass for three different attachment options and three different loads. The numerical analysis of the mechanical properties, stresses, strains and displacements using the finite element method was carried out in solidworks 2020 and their comparative analysis was performed. The computer simulations performed will allow the boundary conditions that directly affect the mechanical properties of the engineering materials to be optimised.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":"105 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manfeng Gong, guangFa Liu, Meng Li, X. Xia, Lei Wang, Jianfeng Wu, Shanhua Zhang, Fang Mei
{"title":"Bonding Properties of TiAlCrSiN Coating / WC-8Co Cemented Carbide with Microtextured Surface","authors":"Manfeng Gong, guangFa Liu, Meng Li, X. Xia, Lei Wang, Jianfeng Wu, Shanhua Zhang, Fang Mei","doi":"10.24425/amm.2023.146223","DOIUrl":"https://doi.org/10.24425/amm.2023.146223","url":null,"abstract":"WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TialCrSin coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":"115 19","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on Tribological Behaviour of Titanium Dioxide Particles Filled Al-0.6Fe-0.5Si Alloy Composite using TOPSIS Approach","authors":"","doi":"10.24425/amm.2023.146209","DOIUrl":"https://doi.org/10.24425/amm.2023.146209","url":null,"abstract":"","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Characterization of Stainless Steel-Molybdenum Composite Coatings and its Evaluation using Image Processing","authors":"","doi":"10.24425/amm.2023.146199","DOIUrl":"https://doi.org/10.24425/amm.2023.146199","url":null,"abstract":"","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 5","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Li, Meng Wang, Han Qi, Jie Li, CHangCHun Pan, Jing ZHang, JingMan Lai
{"title":"Low Temperature Welding Test and Numerical Simulation of Metallurgical Phase Transformation of Q460GJC Thick Plate","authors":"Xin Li, Meng Wang, Han Qi, Jie Li, CHangCHun Pan, Jing ZHang, JingMan Lai","doi":"10.24425/amm.2023.146220","DOIUrl":"https://doi.org/10.24425/amm.2023.146220","url":null,"abstract":"This paper conducts low temperature welding tests on Q460gJC thick plate (60 mm), and based on the basic theory of phase transformation structure evolution, a three-dimensional microstructure evolution analysis method for large welded joints is established, and the analysis of the evolution process of multi-layer and multi-pass weld structure under the low temperature environment of thick plates is completed. The comparison and analysis of test and numerical simulation results are in good agreement, which proves that the welding phase transformation model realizes the digitalization of metallurgical phase transformation in steel structure welding, and optimizes welding process parameters. it is of great significance to improve the quality of welding products and lay a foundation for predicting the performance of welded joints from the micro level.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":" 10","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}