S. Cukrowicz, B. Grabowski, K. Kaczmarska, A. Bobrowski, M. Sitarz, B. Tyliszczak
{"title":"Structural Studies (FTIR, XRD) of Sodium Carboxymethyl Cellulose Modified Bentonite","authors":"S. Cukrowicz, B. Grabowski, K. Kaczmarska, A. Bobrowski, M. Sitarz, B. Tyliszczak","doi":"10.24425/AFE.2020.133340","DOIUrl":"https://doi.org/10.24425/AFE.2020.133340","url":null,"abstract":"The study investigates the effect of the organic compound representing the cellulose derivative - sodium salt of carboxymethyl cellulose (CMC/Na) on the structure of the main component of bentonite (B) - montmorillonite (MMT). Structural analysis revealed that the CMC/Na of different viscosity interacts with the mineral only via surface adsorption, causing at the same time partial or full delamination of its layered structure. This was confirmed by the XRD diffraction tests. Such polymer destructive influence on the structure of the modified main component of the bentonite limits the use of its composites as an independent binder in moulding sand technology, but does not exclude it from acting as an additive being a lustrous carbon carrier. According to the IR spectra of the B/CMC/Na materials, it can be stated that the interaction between the organic and inorganic parts is based on the formation of hydrogen bonds. That kind of the interpretation applies especially to the MMT modified in the bentonite with a lower viscosity polymer. The characteristics of the main IR absorption bands for composites with a higher viscosity polymer indicates the formation of less stable structures suggesting the random nature of the hydrogen bonds formation.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Mould Material on the Mechanical Properties of Wax Models","authors":"Arkadiusz Kroma, Paweł Brzęk","doi":"10.24425/AFE.2021.138664","DOIUrl":"https://doi.org/10.24425/AFE.2021.138664","url":null,"abstract":"The article presents results of research on the influence of the mould material on selected mechanical properties of wax models used for production of casting in investment casting method. The main goal was to compare the strength and hardness of samples produced in various media in order to analyse the applicability of the 3D printing technology as an alternative method of producing wax injection dies. To make the wax injection dies, it was decided to use a milled steel and 3D printed inserts made using FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) technology from HIPS (High Impact Polystyrene) and ABS (Acrylonitrile Butadiene Styrene). A semi-automatic vertical reciprocating injection moulding machine was used to produce the wax samples made of Freeman Flakes Wax Mixture – Super Pink. During injection moulding process, the mould temperature was measured each time before and after moulding with a pyrometer. Then, the samples were subjected to a static tensile test and a hardness test. It was shown that the mould material influences the strength properties of the wax samples, but not their final hardness","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"21 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiparameter Assessment of the Gas Forming Tendency of Foundry Sands with Alkyd Resins","authors":"J. Mocek","doi":"10.24425/AFE.2019.127114","DOIUrl":"https://doi.org/10.24425/AFE.2019.127114","url":null,"abstract":"Gas atmosphere at the sand mould/cast alloy interface determines the quality of the casting obtained. Therefore the aim of this study was to measure and evaluate the gas forming tendency of selected moulding sands with alkyd resins. During direct and indirect gas measurements, the kinetics of gas evolution was recorded as a function of the temperature of the sand mixture undergoing the process of thermal destruction. The content of hydrogen and oxygen was continuously monitored to establish the type of the atmosphere created by the evolved gases (oxidizing/reducing). The existing research methodology [1, 7, 8] has been extended to include pressure-assisted technique of indirect measurement of the gas evolution rate. For this part of the studies, a new concept of the measurement was designed and tested. This article presents the results of measurements and compares gas emissions from two sand mixtures containing alkyd resins known under the trade name SL and SL2002, in which the polymerization process is initiated with isocyanate. Studies of the gas forming tendency were carried out by three methods on three test stands to record the gas evolution kinetics and evaluate the risk of gas formation in a moulding or core sand. Proprietary methods for indirect evaluation of the gas forming tendency have demonstrated a number of beneficial aspects, mainly due to the ability to record the quantity and composition of the evolved gases in real time and under stable and reproducible measurement conditions. Direct measurement of gas evolution rate from the tested sands during cast iron pouring process enables a comparison of the results with the results obtained by indirect methods.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Different Mn/Fe Ratio on Microstructure Alloy Based on Al-Si-Mg","authors":"D. Bolibruchová, R. Podprocká","doi":"10.24425/AFE.2019.127129","DOIUrl":"https://doi.org/10.24425/AFE.2019.127129","url":null,"abstract":"This article deals with the effect of manganese that is the most applied element to eliminate the negative effect of iron in the investigated alloy AlSi7Mg0.3. In this time are several methods that are used for elimination harmful effect of iron. The most used method is elimination by applying the additive elements, so-called iron correctors. The influence of manganese on the morphology of excluded ironbased intermetallic phases was analysed at various iron contents (0.4; 0.8 and 1.2 wt. %). The effect of manganese was assessed in additions of 0.1; 0.2; 0.4 and 0.6 wt. % Mn. The morphology of iron intermetallic phases was assessed using electron microscopy (SEM) and EDX analysis. The increase of iron content in investigated alloys caused the formation of more intermetallic phases and this effect has been more significant with higher concentrations of manganese. The measurements carried out also showed that alloys with the same Mn/Fe ratio can manifest different structures and characteristics of excluded iron-based intermetallic phases, which might, at the same time, be related to different resulting mechanical properties.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Tomaszewska, G. Moskal, T. Mikuszewski, G. Junak, A. Płachta
{"title":"Primary Microstructure Characterization of As-Casted Co-20Ni-7Al-7W Superalloy","authors":"A. Tomaszewska, G. Moskal, T. Mikuszewski, G. Junak, A. Płachta","doi":"10.24425/AFE.2019.127143","DOIUrl":"https://doi.org/10.24425/AFE.2019.127143","url":null,"abstract":"The primary microstructure of new Co-based superalloy of Co-20Ni-7Al-7W (at.%) type was showed in this article. The alloy was manufactured by induction melting in vacuum furnaces. This alloy is a part of new group of high-temperature materials based on Co solid solution and strengthened by coherent L1 2 phase similar to Ni-based superalloys with γʹ phase. The final form of Co ss /L1 2 microstructure is obtained after fully heat treatment included homogenization, solutionizing and aging processes. But first step of heat treatment thermal parameters determination is characterization of primary microstructure of alloys after casting process with special attentions on segregations of alloying elements in solid solution and presences of structural elements such as eutectic areas, and other phases precipitations. In analysed case the relatively high homogeneity of chemical composition was expected especially in the case of W distribution, what was confirmed be SEM/EDS analysis in dendritic and interdendritic areas.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Methods for Determining the Ferrite Content in Duplex Cast Steels","authors":"V. Kaňa, V. Pernica, A. Zadera, V. Krutiš","doi":"10.24425/afe.2019.127121","DOIUrl":"https://doi.org/10.24425/afe.2019.127121","url":null,"abstract":"The paper is concerned with comparing the methods for determining the ferrite content in castings from duplex stainless steels. It uses Schaeffler diagram, empirical formula based calculation, image analysis of metallographic sample, X-ray diffraction and measurement with a feritscope. The influence of wall thickness of the casting on the ferrite content was tested too. The results of the experiments show that the casting thickness of 25 or 60 mm does not have a significant effect on the measured amount of ferrite. The image analysis of metallographic sample and the measurement with the feritscope appear to be the most suitable methods. On the contrary, predictive methods, such as Schaeffler diagram or empirical formula based calculation are only indicative and cannot replace the real measurements. X-ray diffraction seems to be the least suitable measuring method. Values of ferrite content measured in such a way often deviated from the values measured by image analysis and with feritscope.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"3 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Numerical Comparison of Lead-Free and Lead-Containing Brasses for Fixture Application","authors":"","doi":"10.24425/afe.2023.146672","DOIUrl":"https://doi.org/10.24425/afe.2023.146672","url":null,"abstract":"A comparative analysis of brasses alloys, namely lead-free CuZn (CB771) and lead containing CuZn (CB770), was conducted in this article. The results of the comparative analysis and experimental investigations aimed to provide comprehensive knowledge about the thermophysical properties and solidification characteristics of these alloys. Thermodynamic simulations using Thermo-Calc software and modifications in the chemical composition of the CB771 alloy were employed to approximate its characteristics to those of the lead containing CuZn alloy. Thermal-derivative analysis of the alloys and a technological trial were carried out to determine their solidification characteristics, fluidity, and reproducibility. The casting trials were conducted under identical conditions","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"26 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135585618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compacted Graphite Iron with the Addition of Tin","authors":"","doi":"10.24425/afe.2020.133323","DOIUrl":"https://doi.org/10.24425/afe.2020.133323","url":null,"abstract":"The paper presents the effect of tin on the crystallization process, microstructure and hardness of cast iron with compacted (vermicular) graphite. The compacted graphite was obtained with the use of magnesium treatment process (Inmold technology). The lack of significant effect of tin on the temperature of the eutectic transformation has been demonstrated. On the other hand, a significant decrease in the eutectoid transformation temperature with increasing tin concentration has been shown. It was demonstrated that tin narrows the temperature range of the austenite transformation. The effect of tin on the microstructure of cast iron with compacted graphite considering casting wall thickness has been investigated and described. The carbide-forming effect of tin in thin-walled (3 mm) castings has been demonstrated. The nomograms describing the microstructure of compacted graphite iron versus tin concentration have been developed. The effect of tin on the hardness of cast iron was given.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"3 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Use of Phosphate Binder for Ablation Casting of AlSi7Mg Modified TiB Alloy","authors":"","doi":"10.24425/afe.2022.140218","DOIUrl":"https://doi.org/10.24425/afe.2022.140218","url":null,"abstract":"The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (R m was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"14 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma Coatings on Aluminium-Silicon Alloy Surfaces","authors":"","doi":"10.24425/afe.2021.138671","DOIUrl":"https://doi.org/10.24425/afe.2021.138671","url":null,"abstract":"Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"587 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}