{"title":"Analysis of the Impact of Modifiers on the Formation of Non-metallic Inclusions During Continuous Casting of CuZn39Pb2 Brass","authors":"A. W. Bydałek, A. Kula, L. Błaż, K. Najman","doi":"10.24425/afe.2019.127132","DOIUrl":"https://doi.org/10.24425/afe.2019.127132","url":null,"abstract":"In this paper results of microstructural observations for series of CuZn39Pb2 alloys produced from qualified scraps are presented. The individual alloy melts were differentiated in terms of thermal parameters of continuous casting as well as refining methods and modifications. Structural observations performed by SEM and TEM revealed formation of different types of intermetallic phases including “hard particles”. EDS results show that “hard particles” are enrich in silicon, phosphorus, iron, chromium and nickel elements. Additionally, formation of Al-Fe-Si and Al-Cr in alloy melts was observed as well. It was found that quantity and morphology of intermetallic phases strongly depends upon the chemical composition of raw materials, process parameters, modifiers and refining procedure applied during casting. It was observed that refining process results in very effective refinement of intermetallic phases, whereas modifiers, particularly carbon-based, results in formation of large particles in the microstructure.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"26 59","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of Selected Properties of „Vari-Morph” (VM) Cast Iron by Means of the Graphite form Influence, Described by the Mean Shape Indicator","authors":"J. Zych, M. Myszka, N. Kaźnica","doi":"10.24425/afe.2019.127137","DOIUrl":"https://doi.org/10.24425/afe.2019.127137","url":null,"abstract":"The graphite form in cast iron is the structure parameter deciding on its all physical and mechanical properties. Three basic forms of graphite: flake, vermicular (compact) and nodular (spheroidal) are singled out in standard cast iron grades, without a heat treatment. Standards of individual grades of cast iron the most often allow only the homogeneous graphite form, sometimes with addition of 5÷10% of the other form. The interesting and in the authors opinion future-oriented material can constitute cast iron in which various forms of graphite are present, e.g. in comparative amounts: spherical and vermicular cast irons. Cast iron within which graphite occurs in two or three forms was named „Vari-Morph” (VM) cast iron, i.e. the one in which spherical and vermicular or vermicular and flake graphite occur in a wide range of proportions. The results of investigations of these new cast iron grades and their properties are presented in the hereby paper.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"24 26","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distortion Analysis of Thin-Walled Investment Castings","authors":"","doi":"10.24425/afe.2023.146663","DOIUrl":"https://doi.org/10.24425/afe.2023.146663","url":null,"abstract":"Dokra casting is famous for its Artistic value to the world but it is also sophisticated engineering. The technique is almost 4500 years old. It is practiced by the tribal artisans of India. It is a clay moulded wax-based thin-walled investment casting technique where liquid metal was poured into the red hot mould. Dimensional accuracy is always preferable for consumers of any product. Distortion is one of the barriers to achieving the accurate dimension for this type of casting especially for the bending parts. The cause and nature of the distortion for this type of casting must be analyzed to design a product with nominal tolerance and dimensional accuracy","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Bifilm and Sr Modification on the Mechanical Properties of AlSi12Fe Alloy","authors":"","doi":"10.24425/afe.2020.133337","DOIUrl":"https://doi.org/10.24425/afe.2020.133337","url":null,"abstract":"The microstructure of Al-Si alloy has coarse silicon and this structure is known dangerous for mechanical properties due to its crack effect. Sr addition is preferred to modify the coarse silica during solidification. Additionally, bifilms (oxide structure) are known as a more dangerous defect which is frequently seen in light alloys. It is aimed at that negative effect of bifilms on the properties of the alloys tried to be removed by the degassing process and to regulate the microstructure of the alloy. In this study, the effect of degassing and Sr modification on the mechanical properties of AlSi12Fe alloy was investigated, extensively. Four different parameters (as-received, as-received + degassing, Sr addition, Sr addition + degassing) were studied under the same conditions environmentally. The microstructural analyses and mechanical tests were done on cast parts. All data obtained from the experimental study were analyzed statistically by using statistical analysis software. It was concluded from the results that Sr addition is very dangerous for AlSi12Fe alloy. It can be suggested that to reach high mechanical properties and low casting defects, the degassing process must be applied to all castings whereas Sr addition should not be preferred.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"3 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examination of the Eutectic Modifying Effect of Sr on an Al-Si-Mg-Cu Alloy Using Various Technological Parameters","authors":"","doi":"10.24425/afe.2020.133334","DOIUrl":"https://doi.org/10.24425/afe.2020.133334","url":null,"abstract":"With the aid of eutectic modification treatment, the precipitation of coarse lamellar eutectic silicon can be suspended during the solidification of aluminum-silicon alloys, thereby the formation of fine-grained, fibrous eutectic Si can be promoted by the addition of small amounts of modifying elements, such as Sr, to the liquid alloy. The effectiveness of this technique is, however, highly dependent on many technological factors, and the degree of modification can be lowered during the various stages of melt preparation due to the oxidation of the Sr-content of the melt. During our research, we investigated the effect of rotary degassing melt treatments coupled with the addition of three different fluxes on the degree of modification of an Al-Si-Mg-Cu casting alloy. It was also studied, that whether additional Sr alloying made before and during the melt treatments can compensate the Sr fading with time. The degree of eutectic modification was characterized by thermal analysis (TA) and the microscopic investigation of TA specimens. It was found, that by using one of the three fluxes, and by adding Sr master alloy rods before the melt treatments, better modification levels could be achieved. It was also found that the measurement of Sr-concentration by optical emission spectroscopy alone cannot be used for controlling the level of eutectic modification.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"8 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of the Thermal Conductivity Coefficient in the Heat Conduction Model with Fractional Derivative","authors":"R. Brociek, D. Słota","doi":"10.24425/afe.2019.127136","DOIUrl":"https://doi.org/10.24425/afe.2019.127136","url":null,"abstract":"Main goal of the paper is to present the algorithm serving to solve the heat conduction inverse problem. Authors consider the heat conduction equation with the Riemann-Liouville fractional derivative and with the second and third kind boundary conditions. This type of model with fractional derivative can be used for modelling the heat conduction in porous media. Authors deal with the heat conduction inverse problem, which, in this case, consists in identifying an unknown thermal conductivity coefficient. Measurements of temperature, in selected point of the region, are the input data for investigated inverse problem. Basing on this information, a functional describing the error of approximate solution is created. Minimizing of this functional is necessary to solve the inverse problem. In the presented approach the Ant Colony Optimization (ACO) algorithm is used for minimization.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"755 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solid Particle Erosion of Laser Surface Melted Ductile Cast Iron","authors":"A. Kotarska, D. Janicki, J. Górka, T. Poloczek","doi":"10.24425/AFE.2020.133338","DOIUrl":"https://doi.org/10.24425/AFE.2020.133338","url":null,"abstract":"The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GEOPOL®. The Innovated Environment Friendly Inorganic Binder System","authors":"Michal Vykoukal, Alois Burian, Markéta Přerovská","doi":"10.24425/afe.2019.127103","DOIUrl":"https://doi.org/10.24425/afe.2019.127103","url":null,"abstract":"This paper deals with the complete technology of inorganic geopolymer binder system GEOPOL which is a result of long term research and development. The objective of this paper is to provide a theoretical and practical overview of the GEOPOL binder system and introduce possible ways of moulds and cores production in foundries. GEOPOL is a unique inorganic binder system, which is needed and welcomed in terms of the environment, the work environment, and the sustainable resources. The GEOPOL technology is currently used in the foundries for three basic production processes/technologies: (1) for self-hardening moulding mixtures, (2) sand mixtures hardened by gaseous carbon dioxide and (3) the hot box technology with hot air hardening. The GEOPOL technology not only solves the binder system and the ways of hardening, but also deals with the entire foundry production process. Low emissions produced during mixing of sand, moulding, handling, and pouring bring a relatively significant improvement of work conditions in foundries (no VOCs). A high percentage of the reclaim sand can be used again for the preparation of the moulding mixture.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"19 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lead-Free Casting Brasses. Investigations of the Corrosion Resistance and Shaping of Microstructure and Properties","authors":"J. Kozana, A. Garbacz-Klempka, M. Piękoś","doi":"10.24425/afe.2019.127126","DOIUrl":"https://doi.org/10.24425/afe.2019.127126","url":null,"abstract":"The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 µ).","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"24 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Manufacturing of Composite Castings by the Method of Fused Models Reinforced with Carbon Fibers Based on the Aluminum Matrix","authors":"","doi":"10.24425/afe.2023.146670","DOIUrl":"https://doi.org/10.24425/afe.2023.146670","url":null,"abstract":"The paper presents an attempt to produce aluminum matrix composites reinforced with short carbon fibers by precision casting in a chamber with a pressure lower than atmospheric pressure. The composite casting process was preceded by tests related to the preparation of the reinforcement. This is related to the specificity of the precision casting process, in which the mold for shaping the castings is fired at a temperature of 720°C before pouring. Before the mold burns, the reinforcement must be inside, while the carbon fiber decomposes in the atmosphere at 396°C. In the experiment, the reinforcement in the form was secured with flake graphite and quartz sand. The performed firing procedure turned out to be effective. The obtained composite castings were evaluated in terms of the degree of alloy saturation and the displacement of carbon fibers. As a result of the conducted tests, it was found that as a result of unfavorable arrangement of fibers in the CF preform, the flow of metal may be blocked and porosity may appear in the casting.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"29 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}