L. Simkins, S. Greenwood, M. Winsborrow, L. Bjarnadóttir, A. Lepp
{"title":"Advances in understanding subglacial meltwater drainage from past ice sheets","authors":"L. Simkins, S. Greenwood, M. Winsborrow, L. Bjarnadóttir, A. Lepp","doi":"10.1017/aog.2023.16","DOIUrl":"https://doi.org/10.1017/aog.2023.16","url":null,"abstract":"Abstract Meltwater drainage beneath ice sheets is a fundamental consideration for understanding ice–bed conditions and bed-modulated ice flow, with potential impacts on terminus behavior and ice-shelf mass balance. While contemporary observations reveal the presence of basal water movement in the subglacial environment and inferred styles of drainage, the geological record of former ice sheets, including sediments and landforms on land and the seafloor, aids in understanding the spatiotemporal evolution of efficient and inefficient drainage systems and their impact on ice-sheet behavior. We highlight the past decade of advances in geological studies that focus on providing process-based information on subglacial hydrology of ice sheets, how these studies inform theory, numerical models and contemporary observations, and address the needs for future research.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"83 - 87"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46773119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a common terminology in radioglaciology","authors":"Rebecca Schlegel, B. Kulessa, T. Murray, O. Eisen","doi":"10.1017/aog.2023.2","DOIUrl":"https://doi.org/10.1017/aog.2023.2","url":null,"abstract":"Abstract Over the past 70 years, many different components of the cryosphere have been imaged with a variety of radar systems using increasingly sophisticated processing techniques. These systems use various pulse lengths, signal frequencies and, in some cases, modulated signals. The increasing diversity of radar systems has created the potential for confusion due to the use of non-consistent terminology. Here we provide an overview of state-of-the-science radar technologies and suggest a simplified and unified terminology for use by the cryosphere community. We recommend a terminology that is target independent but specifies the characteristics of the signal. Following this recommendation, commercial impulse systems that penetrate the subsurface should be referred to as ground-penetrating radar (GPR), and pulse radars as radio-echo sounding (RES). Continuous-wave (CW) radar systems should be referred to as ground-penetrating CW radars. We further suggest any additional characterisation of the system be expressed using descriptors that specify the platform it is mounted on (e.g. airborne) or the frequency range (e.g. HF (high frequency)) or modulation (e.g. FM (frequency modulated)).","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"8 - 12"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42367555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. T. Bradley, J. De Rydt, D. T. Bett, P. Dutrieux, P. Holland
{"title":"The ice dynamic and melting response of Pine Island Ice Shelf to calving","authors":"A. T. Bradley, J. De Rydt, D. T. Bett, P. Dutrieux, P. Holland","doi":"10.1017/aog.2023.24","DOIUrl":"https://doi.org/10.1017/aog.2023.24","url":null,"abstract":"Abstract Sea level rise contributions from the Pine Island Glacier (PIG) are strongly modulated by the backstress that its floating extension – Pine Island Ice Shelf (PIIS) – exerts on the adjoining grounded ice. The front of PIIS has recently retreated significantly via calving, and satellite and theoretical analyses have suggested further retreat is inevitable. As well as inducing an instantaneous increase in ice flow, retreat of the PIIS front may result in increased ocean melting, by relaxing the topographic barrier to warm ocean water that is currently provided by a prominent seabed ridge. Recently published research (Bradley and others, 2022a) has shown that PIIS may exhibit a strong melting response to calving, with melting close to the PIG grounding line always increasing with ice front retreat. Here, we summarise this research and, additionally, place the results in a glaciological context by comparing the impact of melt-induced and ice-dynamical changes in the ice shelf thinning rate. We find that while PIG is expected to experience rapid acceleration in response to further ice front retreat, the mean instantaneous thinning response is set primarily by changes in melting, rather than ice dynamics. Overall, further ice front retreat is expected to lead to enhanced ice-shelf thinning, with potentially detrimental consequences for ice shelf stability.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"111 - 115"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46123885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Booth, P. Christoffersen, A. Pretorius, J. Chapman, B. Hubbard, Emma C. Smith, S. D. de Ridder, A. Nowacki, B. Lipovsky, M. Denolle
{"title":"Characterising sediment thickness beneath a Greenlandic outlet glacier using distributed acoustic sensing: preliminary observations and progress towards an efficient machine learning approach","authors":"A. Booth, P. Christoffersen, A. Pretorius, J. Chapman, B. Hubbard, Emma C. Smith, S. D. de Ridder, A. Nowacki, B. Lipovsky, M. Denolle","doi":"10.1017/aog.2023.15","DOIUrl":"https://doi.org/10.1017/aog.2023.15","url":null,"abstract":"Abstract Distributed Acoustic Sensing (DAS) is increasingly recognised as a valuable tool for glaciological seismic applications, although analysing the large data volumes generated in acquisitions poses computational challenges. We show the potential of active-source DAS to image and characterise subglacial sediment beneath a fast-flowing Greenlandic outlet glacier, estimating the thickness of sediment layers to be 20–30 m. However, the lack of subglacial velocity constraint limits the accuracy of this estimate. Constraint could be provided by analysing cryoseismic events in a counterpart 3-day record of passive seismicity through, for example, seismic tomography, but locating them within the 9 TB data volume is computationally inefficient. We describe experiments with data compression using the frequency-wavenumber (f-k) transform ahead of training a convolutional neural network, that provides a ~300-fold improvement in efficiency. In combining active and passive-source and our machine learning framework, the potential of large DAS datasets could be unlocked for a range of future applications.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"79 - 82"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43376700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Halbach, Lou-Anne Chevrollier, J. Cook, Ian T. Stevens, M. Hansen, A. Anesio, L. Benning, M. Tranter
{"title":"Dark ice in a warming world: advances and challenges in the study of Greenland Ice Sheet's biological darkening","authors":"Laura Halbach, Lou-Anne Chevrollier, J. Cook, Ian T. Stevens, M. Hansen, A. Anesio, L. Benning, M. Tranter","doi":"10.1017/aog.2023.17","DOIUrl":"https://doi.org/10.1017/aog.2023.17","url":null,"abstract":"Abstract The surface of the Greenland Ice Sheet is darkening, which accelerates its surface melt. The role of glacier ice algae in reducing surface albedo is widely recognised but not well quantified and the feedbacks between the algae and the weathering crust remain poorly understood. In this letter, we summarise recent advances in the study of the biological darkening of the Greenland Ice Sheet and highlight three key research priorities that are required to better understand and forecast algal-driven melt: (i) identifying the controls on glacier ice algal growth and mortality, (ii) quantifying the spatio-temporal variability in glacier ice algal biomass and processes involved in cell redistribution and (iii) determining the albedo feedbacks between algal biomass and weathering crust characteristics. Addressing these key research priorities will allow us to better understand the supraglacial ice-algal system and to develop an integrated model incorporating the algal and physical controls on ice surface albedo.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"95 - 100"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42613465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in data availability to constrain and evaluate frontal ablation of ice-dynamical models of Greenland's tidewater peripheral glaciers","authors":"Beatriz Recinos, F. Maussion, B. Marzeion","doi":"10.1017/aog.2023.11","DOIUrl":"https://doi.org/10.1017/aog.2023.11","url":null,"abstract":"Abstract We revise and evaluate frontal ablation fluxes obtained by the Open Global Glacier Model (OGGM) for Greenland's tidewater peripheral glaciers de-coupled from the ice sheet. By making use of new region-wide ice thickness and solid ice discharge data, we re-evaluate model performance and suggest future research directions to improve the ice thickness estimation of glacier models. OGGM is unable to predict individual tidewater glacier dynamics well if it has to rely only on surface mass balance estimates and the assumption of a closed budget to constrain the calving parameterization. Velocity observations are essential to constrain the model and estimate the dynamic mass loss of Greenland's tidewater peripheral glaciers.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"55 - 61"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48332897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topographic modulation of outlet glaciers in Greenland: a review","authors":"G. Catania, D. Felikson","doi":"10.1017/aog.2023.55","DOIUrl":"https://doi.org/10.1017/aog.2023.55","url":null,"abstract":"Abstract Bed topography is a critical parameter for determining the modern-day and future dynamics of ice sheets and their outlet glaciers. This is because the topography controls the state of stress for glaciers. At glacier termini, topography can influence the timing of terminus retreat by controlling access to warm ocean waters and/or by influencing the ability of a glacier terminus to retreat over bed bumps (moraines). Inland from the terminus, the topography can also influence where glacier retreat and thinning can stabilize. In part, this is because of knickpoints in bed topography created through glacial erosion that may influence the extent to which thinning can diffuse inland for an individual glacier and thus, the timing and magnitude of long-term mass loss. Here we provide a review of the current literature on these topics. While much of the reviewed literature assumes that topography is stable on relevant timescales to humans, new research suggests that topography may change much faster than previously thought and this further complicates our ability to project future outlet glacier change.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"171 - 177"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48795905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The singing firn","authors":"J. Chaput, R. Aster, M. Karplus","doi":"10.1017/aog.2023.34","DOIUrl":"https://doi.org/10.1017/aog.2023.34","url":null,"abstract":"Abstract Antarctic firn presents an exotic seismological environment in which the behaviors of propagating waves can be significantly at odds with those in other Earth media. We present a condensed view of the nascent field of ambient noise seismology in Antarctic firn-covered media, and highlight multiple unusual and information-rich observations framed through the lens of the firn's important role as a buffer for air temperature anomalies and a complex contributor to ice mass balance. We summarize key results from several recent papers depicting novel wind-excited firn resonances and point to the plethora of ways these observations could facilitate imaging and monitoring of glacial systems at single, isolated seismometers. Finally, we propose significant instrumental and computational objectives necessary to constrain resonance excitation mechanisms and broadly apply these observations as useful monitoring tools in Antarctica.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"137 - 142"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43720980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coupled 3-D full-Stokes modelling of tidewater glaciers","authors":"Samuel J. Cook, P. Christoffersen, Iain Wheel","doi":"10.1017/aog.2023.4","DOIUrl":"https://doi.org/10.1017/aog.2023.4","url":null,"abstract":"Abstract Tidewater glaciers are an important and difficult part of the cryosphere to study owing to their complex nature and often inaccessible and physically challenging environments. The interaction of glacier and fjord processes furthermore presents particular observational challenges. Modelling provides a possible solution to these issues, but, at the glacier scale, the processual complexities require a 3-D full-Stokes approach that is computationally expensive. Additionally, the lack of data for model validation or constraints imposes further obstacles. Despite this, progress on modelling such glaciers with explicit inclusion of all relevant processes is being made. The key remaining challenges are including more realistic representations of calving and coupling 3-D glacier modelling with 3-D fjord circulation modelling to allow inclusion of the effect of cross-fjord circulation. We are confident, however, that these issues can be resolved and will be resolved over the next decade.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"23 - 26"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48227536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Pearce, A. Booth, S. Rost, P. Sava, T. Konuk, A. Brisbourne, B. Hubbard, I. Jones
{"title":"A synthetic study of acoustic full waveform inversion to improve seismic modelling of firn","authors":"E. Pearce, A. Booth, S. Rost, P. Sava, T. Konuk, A. Brisbourne, B. Hubbard, I. Jones","doi":"10.1017/aog.2023.10","DOIUrl":"https://doi.org/10.1017/aog.2023.10","url":null,"abstract":"Abstract The density structure of firn has implications for hydrological and climate modelling and for ice shelf stability. The firn structure can be evaluated from depth models of seismic velocity, widely obtained with Herglotz-Wiechert inversion (HWI), an approach that considers the slowness of refracted seismic arrivals. However, HWI is appropriate only for steady-state firn profiles and the inversion accuracy can be compromised where firn contains ice layers. In these cases, Full Waveform Inversion (FWI) can be more successful than HWI. FWI extends HWI capabilities by considering the full seismic waveform and incorporates reflected arrivals, thus offering a more accurate estimate of a velocity profile. We show the FWI characterisation of the velocity model has an error of only 1.7% for regions (vs. 4.2% with HWI) with an ice slab (20 m thick, 40 m deep) in an otherwise steady-state firn profile.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"63 1","pages":"44 - 48"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44317809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}