{"title":"Influence Analysis of mm-Wave DUT Mounting Fixture in 5G OTA Measurement","authors":"Xudong An, Meijun Qu, Siting Zhu, Xiaochen Chen","doi":"10.47037/2021.aces.j.36094","DOIUrl":"https://doi.org/10.47037/2021.aces.j.36094","url":null,"abstract":"─ All of the test cases in the current version of TR 38.810 in 3GPP and CTIA millimeter-Wave (mmWave) test plan are limited to the free space configuration. However, the truly free-space condition does not exist for mm-Wave testing of 5G user equipment since no device can float in the air. Mounting fixtures and supporting structures are needed to fix the device under test (DUT) and move it in two axes. The influence of mounting fixture on 5G mm-Wave wireless device performance is analyzed in this paper. First, a common 4×1 patch array at 28 GHz is simulated as the performance baseline. Various mounting fixture thickness & various spacing between the DUT and the mounting fixture are simulated to get a quick understanding of the mounting fixture’s influence on DUT performance. In different configurations, the working frequency of the antenna would have different degrees of deviation, while the gain could decrease or increase accordingly. Then, to explain these phenomena, an equivalent circuit is extracted utilizing the transmission line theory. Finally, according to the findings, it is recommended that the thickness of the mounting structure should be equal to an integer time of 0.5 λg to minimize the impact of the fixture for practical mounting structure design. Index Terms ─ 5G, effect, millimeter-wave, mounting fixture, OTA.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"18 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78997990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-polarized Fixed-frequency Beam Scanning Leaky-wave Antenna for 5G Communication","authors":"H. Li, Y. Zhou","doi":"10.47037/2021.aces.j.360706","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360706","url":null,"abstract":"A low profile and dual-polarized fixed-frequency beam scanning leaky wave antenna for 5G communication is presented, which is based on a corrugated microstrip line (CML) called spoof surface plasmons transmission line. The antenna radiates horizontally polarized electromagnetic wave and vertically polarized electromagnetic wave using two different periodic antennas elements. The fabricated antenna is measured and the results show that the operating frequency of the antenna is 3.4-3.7 GHz. The measured main beam angle scans from -9° to -30°. The measured gain is from 8.3 dB to 9.7 dB over the working band.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"68 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76567721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Size-Reduced Equilateral Triangular Metamaterial Patch Antenna Designed for Mobile Communications","authors":"Guoxian Dai, Xiaofei Xu, Xiao Deng","doi":"10.47037/2021.aces.j.360811","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360811","url":null,"abstract":"─ A size-reduced equilateral triangular metamaterial patch antenna (ETMPA) is proposed for the 5G mobile communications. The new ETMPA is formed from a conventional equilateral triangular patch antenna (ETPA) by additionally loading triangular-shaped mushroom metamaterials. One ETMPA is experimentally demonstrated. It is shown to resonate at 3.488GHz. The side length is only 0.483λg, which is much smaller than that for a conventional ETPA with a length of 0.66λg. Despite its compactness, the ETMPA has an acceptable bandwidth of 2.1% and antenna gain of 6.3dBi in measurement. These performances make the compact ETMPA proposing to be used in the wireless communications at 3.5GHz. Index Terms ─ Equilateral triangular patch antenna, metamaterials, size-reduced.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"64 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81088881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Dayo, Q. Cao, Yi Wang, P. Soothar, I. A. Khoso, Gulab Shah, Muhammad Aamir
{"title":"A Compact High Gain Multiband Bowtie Slot Antenna with Miniaturized Triangular Shaped Metallic Ground Plane","authors":"Z. Dayo, Q. Cao, Yi Wang, P. Soothar, I. A. Khoso, Gulab Shah, Muhammad Aamir","doi":"10.47037/2021.aces.j.360717","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360717","url":null,"abstract":"This paper presents a new compact, high gain and multiband planar bowtie slot antenna. The antenna structure comprises of dielectric substrate, copper conducting sheet, fillet triangular-shaped slots, and a chamfered metallic ground plane. The proposed antenna model is fed with the 50 Ω standard grounded coplanar waveguide (GCPW) feedline. The designed antenna is low profile with compact dimensions of 0.379λ×0.186λ×0.012λ at 2.39 GHz frequency. Stable multi-resonant behavior of frequencies is obtained with the material selection, slots dimensions and position. Moreover, the parametric study has been carried out in order to validate the frequency tuning mechanism and impedance matching control. The novelty of designed antenna lies in high performance features which have been achieved with ultra-compact (0.039λ×0.022λ) modified triangular shaped metallic ground plane. The proposed antenna is fabricated and experimentally verified. The antenna key features in terms of return loss, surface current distribution, peak gain, radiation efficiency and radiation patterns have been analyzed and discussed. The designed radiator exhibits the excellent performance including strong current density, peak realized gain of 6.3 dBi, 95% radiation efficiency, wide fractional bandwidth of 39.5% and good radiation characteristics at in-band frequencies. The simulation and measured results are in good agreement and hence make the proposed antenna a favorable candidate for the advanced heterogeneous wireless communication applications.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"90 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89376082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Kaburcuk, Gurkan Kalinay, Yiming Chen, A. Elsherbeni, V. Demir
{"title":"A Dual-Band and Low-Cost Microstrip Patch Antenna for 5G Mobile Communications","authors":"F. Kaburcuk, Gurkan Kalinay, Yiming Chen, A. Elsherbeni, V. Demir","doi":"10.47037/2021.aces.j.360701","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360701","url":null,"abstract":"This paper investigates the numerical and experimental analysis of a low-cost and dual-band microstrip patch antenna for the fifth generation (5G) mobile communications. The numerical analysis of the proposed antenna is performed using the computational electromagnetic simulator (CEMS) software which is based on the finite-difference time-domain (FDTD) and CST software which is based on the finite integration technique (FIT). The performance of the proposed antenna designed and fabricated on a low-cost FR-4 substrate is verified with the simulated and measured results. The antenna operates at dual frequency bands which are 24 and 28 GHz. The antenna maximum gain values are 3.20 dBi and 3.99 dBi in the x-y plane at 24 and 28 GHz, respectively. The proposed antenna provides almost omni-directional patterns suitable for 5G mobile communication devices.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"12 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85247585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circuit Modelling Methodology for Dual-band Planar Antennas","authors":"K. Yeap, Tobias Meister, Zi Xin Oh, H. Nisar","doi":"10.47037/2021.aces.j.360822","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360822","url":null,"abstract":"─ This paper presents a simple and systematic approach to determine the equivalent frequencyindependent circuit model for a dual-band planar antenna. The Foster Canonical network synthesis technique with two RLC tanks has been employed to generate the two resonant bands of the antenna. The transfer function model is subsequently refined using a data fitting algorithm (viz the Nelder-Mead simplex algorithm). Parametric adjustments are performed at the final stage in order to further improve the accuracy of the final parameters. Index Terms ─ Data-fitting algorithm, equivalent circuit, Foster canonical network, planar antenna,","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"55 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85270787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Low-Profile Broadband Circularly Polarised Wide-Slot Antenna with an Artificial Magnetic Conductor Reflector","authors":"F. Fan, Xiao Fan, Xiaoyu Wang, Zehong Yan","doi":"10.47037/2020.aces.j.360616","DOIUrl":"https://doi.org/10.47037/2020.aces.j.360616","url":null,"abstract":"In this letter, a novel broadband circularly polarisation (CP) wide-slot antenna with an artificial magnetic conductor (AMC) as the reflector is presented. The wide-slot antenna is composed of a knife-shaped radiator and an improved ground plane. A broadband CP characteristic can be achieved by slotting the ground plane to make it an asymmetric ground shape. However, the average gain of the wide-slot antenna is only about 3 dBic because of bidirectional radiation. An AMC reflector is adopted to enhance the gain of the wide-slot antenna without introducing a high profile similar to the PEC reflector. In addition, the four metal plates are vertically placed around the antenna to broaden the axial ratio (AR) bandwidth of the antenna with the AMC reflector. The measurement results show that the 3dB AR bandwidth of the proposed CP antenna is 32.4% (2.35GHz─3.26GHz), the average gain is 6.5dBic in the AR bandwidth and the value of VSWR in the AR bandwidth is less than 2. The size of the antenna is 0.84λ0× 0.84λ0× 0.13λ0 at the centre frequency of 2.805 GHz. The proposed antenna has a low profile, broad AR bandwidth and high gain, thereby being a good candidate for various wireless communication systems.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"11 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80714481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SDR Based Modulation Performance of RF Signal under Different Communication Channel","authors":"S. Habib","doi":"10.47037/2021.aces.j.360813","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360813","url":null,"abstract":"─ Hardware components are an integral part of Hardware Define Radio (HDR) for seamless operations and optimal performance. On the other hand, Software Define Radio (SDR) is a program that does not rely on any hardware components for its performance. Both of the latter radio programmers utilize modulation functions to make their core components from signal processing viewpoint. The following paper concentrates on SDR based modulation and their performance under different modulations. The bit error rate (BER) of modulations such as PSK, QAM, and PSAM were used as indicators to test channel quality estimation in planar Rayleigh fading. Though it is not commonly used for channel fading, the method of the adder determines the regionally segmented channel fading. Thus, the estimation error of the channel change substantially reduces the performance of the signal, hence, proving to be an effective option. Moreover, this paper also elaborates that BER is calculated as a function of the sample size (signal length) with an average of 20 decibels. Consequently, the size of the results for different modulation schemes has been explored. The analytical results through derivations have been verified through computer simulation. The results focused on parameters of amplitude estimation error for 1dB reduction in the average signal-to-noise ratio, while the combined amplitude deviation estimation error results are obtained for a 3.5 dB reduction. Index Terms ─ Bit error rate, receiver operation, RF signal, signal noise ratio, transmitter, wireless channel.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"17 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88659947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenqi Li, Zhongsen Sun, Zhejun Jin, Tian Liu, Leonid F. Chernjgor, Yu-Yi Zheng
{"title":"Design and Analysis of High Gain Dual-polarized Dipole Antenna Based on Partially Reflective Metasurface","authors":"Chenqi Li, Zhongsen Sun, Zhejun Jin, Tian Liu, Leonid F. Chernjgor, Yu-Yi Zheng","doi":"10.47037/2021.aces.j.360918","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360918","url":null,"abstract":"─ A partially reflective metasurface (PRMS) structure is proposed for dual-polarized dipole antenna with a high gain and wide broadband. Stable radiation patterns are realized by using quadrilateral bottom reflector. The phase bandwidth of PRMS structure reflection presented in this paper matches well with the antenna operating bandwidth. The gain of the dualpolarized antenna is improved to 10.2dBi at 1.8GHz by adjusting the size and height of PRMS structure. Meanwhile, the bandwidth is expanded (61.2%). Measured result demonstrates that the antenna has a stable beamwidth which is desirable in base station applications. Furthermore, the designed antenna can be used for communication in complex environment because of its excellent performance. Index Terms ─ Dual-polarize, high gain, partially reflective metasurface (PRMS), quadrilateral bottom reflector.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"86 9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87686047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Jiang, Yuan Ye, Daotong Li, Zhaoyu Huang, Chao Wang, Jingjian Huang, N. Yuan
{"title":"Design of W-band PIN Diode SPDT Switch with Low Loss","authors":"Yun Jiang, Yuan Ye, Daotong Li, Zhaoyu Huang, Chao Wang, Jingjian Huang, N. Yuan","doi":"10.47037/2021.aces.j.360712","DOIUrl":"https://doi.org/10.47037/2021.aces.j.360712","url":null,"abstract":"A W-band PIN diode single pole double throw (SPDT) switch with low insertion loss (IL) was successfully developed using a hybrid integration circuit (HIC) of microstrip and coplanar waveguide (CPW) in this paper. In order to achieve low loss of the SPDT switch, the beam-lead PIN diode 3D simulation model was accurately established in Ansys High Frequency Structure Simulator (HFSS) and the W-band H-plane waveguide-microstrip transition was realized based on the principle of the magnetic field coupling. The key of the proposed method is to design the H-plane waveguide-microstrip transition, it not only realizes the low IL of the SPDT switch, but also the direct current (DC) bias of the PIN diode can be better grounded. In order to validate the proposed design method, a W-band PIN diode SPDT switch is fabricated and measured. The measurement results show that the IL of the SPDT switch is less than 2 dB in the frequency range of 85 to 95 GHz, while the isolation of the SPDT switch is greater than 15 dB in the frequency range of 89.5 to 94 GHz. In the frequency range of 92 to 93 GHz, the IL of the SPDT switch is less than 1.65 dB, and its isolation is higher than 22 dB. Switch rise time and switch fall time of the SPDT switch are smaller than 29ns and 19ns, respectively. Good agreement between the simulations and measurements validates the design method.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"47 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73763213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}