Aleksei Sadykov, Yannick P. Stenzel, Martin Winter, Simon Wiemers-Meyer and Sascha Nowak
{"title":"Determination of polysulfide anions and molecular sulfur via coupling HPLC with ICP-MS†","authors":"Aleksei Sadykov, Yannick P. Stenzel, Martin Winter, Simon Wiemers-Meyer and Sascha Nowak","doi":"10.1039/D4JA00231H","DOIUrl":"10.1039/D4JA00231H","url":null,"abstract":"<p >A novel method for the speciation and quantification of polysulfide anions and molecular sulfur in lithium polysulfide solutions in organic solvents is reported. The technique is based on hyphenation of high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS). A sector-field mass-spectrometer was utilized which made it possible to quantify various sulfur compounds without the need for single component standards and conduct the direct detection of the main isotope of sulfur regardless of interferents such as highly abundant <small><sup>16</sup></small>O<small><sub>2</sub></small>. Key aspects of separation and sample preparation were considered which allowed complete separation of derivatized polysulfide anions. Gradual adjustment of essential parameters and hardware is described. Variation of plasma settings allowed for obtaining chromatograms with desired analyte peak shapes. The optimized method was applied for the quantification of various lithium polysulfide mixtures in organic solvents showing the accessibility of the corresponding polysulfide distributions with this technique.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2480-2487"},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ja/d4ja00231h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The KNW rutile—a natural reference material for microbeam U–Pb age and trace element determination†","authors":"Jia Meng, Shitou Wu, Hao Wang, Yueheng Yang, Chao Huang, Chao Zhang, Wenqiang Yang, Jiarun Tu, Shuiyuan Yang, Qian Ma, Qian Wang, Lei Xu and Liewen Xie","doi":"10.1039/D4JA00190G","DOIUrl":"10.1039/D4JA00190G","url":null,"abstract":"<p >Rutile is an accessory mineral that is widely distributed in magmatic, metamorphic, and sedimentary rocks. Thus, rutile U–Pb geochronology and geochemistry (<em>e.g.</em>, Zr-in-rutile thermometry) can provide important information on the geological evolution of a region. Accurate and precise <em>in situ</em> U–Pb dating and trace element content measurement require well-characterized reference materials to correct matrix-dependent elemental fractionation. We present a natural rutile reference material (the KNW rutile) for microbeam U–Pb age and trace element determination. The KNW rutile was collected from a pegmatite in Kragerø, Norway, which is ∼20 km east of the location where the R10 rutile was sampled. It is ∼21 mm × 10 mm × 8 mm in size, with a total mass of ∼30 g. The KNW rutile has a homogeneous U–Pb age, as shown by numerous LA-ICP-MS spot analyses (weighted mean <small><sup>206</sup></small>Pb/<small><sup>238</sup></small>U age = 1089.5 ± 3.3 Ma; MSWD = 2.7; <em>n</em> = 229). KNW rutile contains very little common Pb with only 12 of 241 spot analyses showing an amount of common Pb (<em>f</em><small><sub>206</sub></small>: 0–20%). Seven ID-TIMS analyses produced a concordia age of 1088.2 ± 1.5 Ma (MSWD = 0.63) and a weighted mean <small><sup>206</sup></small>Pb/<small><sup>238</sup></small>U age of 1088.2 ± 1.9 Ma (MSWD = 0.19), which is our recommended U–Pb age. The degree of homogeneous distributions of eleven trace elements was evaluated using LA-ICP-MS and EPMA. V, Cr, Nb, Sc, Zr, and Hf are sufficiently homogeneously distributed, whereas Ta, U, Pb, Fe, and W are heterogeneous. The determination of reference values for Zr and other trace elements as well as their uncertainties at the 95% confidence level followed International Organization for Standardization (ISO) guidelines and the certification protocol of the International Association of Geoanalysts (IAG) closely. The KNW rutile has a Zr content of 1183 ± 198 μg g<small><sup>−1</sup></small> (95% confidence level). The KNW rutile is a useful addition to the reference materials previously distributed for microbeam U–Pb age and trace element determination.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2488-2501"},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fanhua Qu, Haochen Li, Qifang Sun, Wanxiang Li, Yuchao Fu, Meizhen Huang and Tianyuan Liu
{"title":"High-accuracy quantification of soil elements by laser-induced breakdown spectroscopy based on PCA-GS-ELM","authors":"Fanhua Qu, Haochen Li, Qifang Sun, Wanxiang Li, Yuchao Fu, Meizhen Huang and Tianyuan Liu","doi":"10.1039/D4JA00176A","DOIUrl":"10.1039/D4JA00176A","url":null,"abstract":"<p >Laser-induced breakdown spectroscopy (LIBS) quantitative analysis is susceptible to matrix effects, especially in samples with significant differences in texture, such as soil and coal. Adding additional information such as the physicochemical properties of the sample and plasma images based on the original spectrum is an effective measure to reduce substrate effects. In this study, a new strategy to mitigate the impact of matrix effects and a high-accuracy quantification method for elements in soil by LIBS called PCA-GS-ELM are proposed. No additional equipment is required to obtain auxiliary information. Principal component analysis (PCA) is employed to extract spectral differences between different samples, and the differential spectrum is combined with the original spectrum to form the generalized spectra (GS), which is then input into the extreme learning machine (ELM) model. The model is trained to simultaneously focus on the element characteristic spectral lines and matrix differences between samples. In the experiment, a self-developed portable high-frequency LIBS is used. In the quantitative analysis of six major elements in 13 soil samples, the PCA-GS-ELM method has significantly improved accuracy. The RMSEP for Si, Al, Ca, Fe, Mg, and Ti is 0.946, 0.278, 0.394, 0.08, 0.169, and 0.034 wt%, respectively. The results demonstrate that the proposed generalized spectral method can mitigate matrix effects and enhance the performance of multivariate analysis methods.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2514-2521"},"PeriodicalIF":3.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithium-ion batteries: direct solid sampling for characterisation of black mass recyclates using graphite furnace atomic absorption spectrometry†","authors":"Maria Dommaschk, Tim Sieber and Jörg Acker","doi":"10.1039/D4JA00207E","DOIUrl":"10.1039/D4JA00207E","url":null,"abstract":"<p >In this work, the potential for direct major component analysis of lithium–nickel–manganese–cobalt oxide variants in solid samples by graphite furnace atomic absorption spectrometry (SS-GF AAS) was critically evaluated, always with the aim of developing a simple and rapid method that relies only on the use of aqueous standards for calibration. The accuracy of the developed method was evaluated against an established wet chemical acid digestion method using an inductively coupled plasma optical emission spectrometer (ICP-OES). The most challenging aspect was the selection and use of suitable standards, whereby the analytical performance criteria of liquid standards, single oxide solid standards and multi-element solid standards had to be determined. With the result that multi-element liquid standards can be used for calibration, very good agreement with the certified reference values and with the values obtained by ICP-OES was achieved in all cases. The precision of the method was better than 12% with an optimum sample mass of 0.2–0.4 mg. The results show that not only the major components in pure NMC compounds (<em>e.g.</em> starting materials) can be reliably analysed, but also the cathode coatings made from recycled battery materials. This demonstrates the range of applications of the methods and their suitability under industrial conditions, for example in the analysis of recyclates. The technology is almost predestined for use in industrial laboratories in order to quickly and accurately determine the stoichiometric composition of cathode coatings from aged lithium batteries and to ensure battery shredding by type.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2522-2531"},"PeriodicalIF":3.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao-Yang Wang, Fei-Yu Dong, Lu Yin, Jun-Jie Liu, Qiao-Hui Zhong and Jie Li
{"title":"Determination of thallium isotopic composition through MC-ICP-MS with mass bias corrected using admixed W†","authors":"Zhao-Yang Wang, Fei-Yu Dong, Lu Yin, Jun-Jie Liu, Qiao-Hui Zhong and Jie Li","doi":"10.1039/D4JA00187G","DOIUrl":"10.1039/D4JA00187G","url":null,"abstract":"<p >Despite their widespread application in planetary and earth sciences in the past two decades, thallium isotopic compositions have been determined <em>via</em> MC-ICP-MS with instrumental mass bias corrected by employing a combination of lead doping and standard-sample bracketing. Residual Pb, either from the sample matrix or contamination, may significantly distort the isotope ratio of Pb for mass bias correction, thereby affecting the accuracy of Tl isotope measurement. In this study, we employed <small><sup>186</sup></small>W/<small><sup>184</sup></small>W (NIST SRM 3163 W) instead of <small><sup>208</sup></small>Pb/<small><sup>206</sup></small>Pb (NIST SRM 981 Pb) to correct instrumental mass bias during the measurement of Tl isotopic compositions through MC-ICP-MS. The plot of ln(<small><sup>186</sup></small>W/<small><sup>184</sup></small>W) <em>vs.</em> ln(<small><sup>205</sup></small>Tl/<small><sup>203</sup></small>Tl) shows a strong linear correlation (<em>R</em><small><sup>2</sup></small> > 0.993) in the repeated analyses of NIST SRM 997 Tl using W. Two pure Tl standards, Fluka Tl and GSB Tl, produced <em>ε</em><small><sup>205</sup></small>Tl<small><sub>NIST 997</sub></small> values of −1.9 ± 0.7 (2SD, <em>n</em> = 97) and 0.8 ± 0.7 (2SD, <em>n</em> = 31), respectively. The <em>ε</em><small><sup>205</sup></small>Tl<small><sub>NIST 997</sub></small> of five geological reference materials (SCo-1, GSS-6, GSP-2, NOD-P-1, and NOD-A-1) are also reported here, and the external reproducibility of these results is better than 0.08‰ (2SD). <em>ε</em><small><sup>205</sup></small>Tl<small><sub>NIST 997</sub></small> values are in good agreement with previously published values determined using Pb doping to correct mass bias, demonstrating that W can serve as a calibrator and facilitate high-precision <em>ε</em><small><sup>205</sup></small>Tl<small><sub>NIST 997</sub></small> measurement of geological materials.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2443-2451"},"PeriodicalIF":3.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomic Spectrometry Updates: An overview and call for new writers","authors":"","doi":"10.1039/D4JA90044H","DOIUrl":"https://doi.org/10.1039/D4JA90044H","url":null,"abstract":"<p >The Atomic Spectrometry Updates (ASU) Editorial Board is seeking to recruit new writers. If you are interested in becoming a member of the production team and joining the ASU Board, now is the time to apply. This editorial provides a brief overview of the history of ASU, information on how we operate and details of how you can get involved.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 9","pages":" 2150-2151"},"PeriodicalIF":3.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ben Russell, Frankie Falksohn, Alexandre Tribolet, Hibaaq Mohamud, Olivia Pearson, Emma Braysher, Saskia Burke and Anu Bhaisare
{"title":"Improvements in low-level radionuclide measurement capability through use of the Apex Q sample introduction system combined with ICP-MS/MS†","authors":"Ben Russell, Frankie Falksohn, Alexandre Tribolet, Hibaaq Mohamud, Olivia Pearson, Emma Braysher, Saskia Burke and Anu Bhaisare","doi":"10.1039/D4JA00216D","DOIUrl":"10.1039/D4JA00216D","url":null,"abstract":"<p >Inductively coupled plasma mass spectrometry (ICP-MS) is increasingly used for rapid measurement of medium and long-lived radionuclides. Of the techniques available, tandem ICP-MS/MS is of growing interest owing to the enhanced online interference removal capabilities offered by an additional mass filter and a collision-reaction cell. This can reduce or remove the need for offline chemical separation, further reducing the procedural time. This online interference removal approach can reduce analyte sensitivity, which is an issue for trace-level measurements, particularly for relatively short-lived radionuclides. To help address this, this study investigates the use of desolvating sample introduction combined with ICP-MS/MS for enhanced measurement of multiple radionuclides. Results are shown for actinides, difficult-to-measure radionuclides of high priority for nuclear decommissioning, and shorter-lived radionuclides relevant to paleoclimate measurement. The improved sensitivity and additional interference removal achieved compared to the standard sample introduction system are demonstrated, with the results benefitting end users interested in improved waste characterisation, environmental radioactivity, nuclear forensics, and improved historical climate measurements.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 11","pages":" 2929-2936"},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Jiang, Yongsheng Liu, Wengui Liu, Jie Lin, Zhenyi Liu, Lifei Chen, Xi Zhu, Wen Zhang and Zhaochu Hu
{"title":"A device for reducing the atmosphere-induced interferences for analysis using inductively coupled plasma-mass spectrometry†","authors":"Xin Jiang, Yongsheng Liu, Wengui Liu, Jie Lin, Zhenyi Liu, Lifei Chen, Xi Zhu, Wen Zhang and Zhaochu Hu","doi":"10.1039/D4JA00185K","DOIUrl":"10.1039/D4JA00185K","url":null,"abstract":"<p >The atmosphere-induced interference reduction device (AIRD) shows promise in mitigating interferences in inductively coupled plasma-mass spectrometry (ICP-MS) analysis. The effectiveness of AIRD in reducing interferences caused by atmospheric gases such as H, C, N and O was evaluated by using argon (Ar) and helium (He) as shielding gases due to their inert properties. Krypton (<small><sup>82</sup></small>Kr) served as an internal standard for monitoring and correcting instrumental sensitivity drift. The shielding gas flow rate was optimized using gas dynamics simulations, revealing a threshold of 10 L min<small><sup>−1</sup></small> for optimal interference reduction. Results indicate the superiority of He in reducing interferences, with a reduction of 32% for <small><sup>12</sup></small>C<small><sup>+</sup></small>, 51% for <small><sup>15</sup></small>N<small><sup>+</sup></small>, 56% for <small><sup>16</sup></small>O<small><sup>+</sup></small>, 54% for <small><sup>16</sup></small>O<small><sup>1</sup></small>H<small><sup>1</sup></small>H<small><sup>+</sup></small>, 51% for <small><sup>40</sup></small>Ar<small><sup>14</sup></small>N<small><sup>+</sup></small>, and 42% for <small><sup>40</sup></small>Ar<small><sup>16</sup></small>O<small><sup>+</sup></small> compared to Ar. Moreover, AIRD maintained low oxide yields even after shielding gas cessation, with oxide yield maintained at approximately 0.03% for 24 hours. Analyses of LA-ICP-MS coupled with AIRD demonstrate that ThO/Th can be reduced from 0.92% to 0.15% compared to normal analysis without AIRD. Experimental investigations further revealed that AIRD influenced elemental sensitivity, particularly with He as the shielding gas, with an ∼25.7% enhancement observed in the signal intensity of <small><sup>82</sup></small>Kr.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2452-2460"},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meritxell Cabré, Gabriel Fernández, Esther González, Jordi Abellà and Ariadna Verdaguer
{"title":"Single particle ICP-MS: a tool for the characterization of gold nanoparticles in nanotheranostics applications†","authors":"Meritxell Cabré, Gabriel Fernández, Esther González, Jordi Abellà and Ariadna Verdaguer","doi":"10.1039/D4JA00141A","DOIUrl":"10.1039/D4JA00141A","url":null,"abstract":"<p >Nanotheranostics aims to perform a premature and non-invasive diagnosis combined with therapy focused on the specific place where the disease is by using nanomaterials. To evaluate the ability to penetrate and retain the inorganic nanoparticles (NPs) in the cells, analytical techniques such as Single-Particle ICP-MS (SP-ICP-MS) are required to characterize these NPs. SP-ICP-MS provides not only the size distribution and concentration of NPs but also the concentration of the dissolved elements. In recent years, direct alkaline dilution of blood, serum, and urine is performed in clinical laboratories for routine analysis. This alkaline diluent is named clinical diluent and it is a mixture of ammonia, EDTA, 2-propanol, Triton X100, and purified water. In this work, a methodology to characterize AuNPs in blood and urine samples using SP-ICP-MS has been developed. Samples were directly diluted with clinical diluent before multi-quadrupole ICP-MS analysis. The effect of this clinical diluent on the behaviour and stability of AuNPs has been studied. Good stability of AuNPs was observed for both the particle size and particle concentration (<17% difference in 10 days). Moreover, analytical parameters of this method such as linearity, detection limit, accuracy, and precision in blood and urine samples were studied for both the particle size and particle concentration. Linearity was evaluated for particle size (from 10 to 100 nm) and particle concentration (from 5 × 10<small><sup>3</sup></small> to 1 × 10<small><sup>4</sup></small> NP per mL). Furthermore, recoveries between 88% and 103% for the NP concentration and between 100% and 110% for the nanoparticle size were obtained. Dissolved and gold nanoparticle detection limits have also been estimated.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2508-2513"},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayumu Matsumoto, Yuta Toyama, Yusuke Shimazu, Keisuke Nii, Yoshiaki Ida and Shinji Yae
{"title":"Quantitative analysis of niobium in electropolishing solution by laser-induced breakdown spectroscopy using porous silicon†","authors":"Ayumu Matsumoto, Yuta Toyama, Yusuke Shimazu, Keisuke Nii, Yoshiaki Ida and Shinji Yae","doi":"10.1039/D4JA00177J","DOIUrl":"10.1039/D4JA00177J","url":null,"abstract":"<p >For the construction of the international linear collider, mass production of niobium (Nb) superconducting cavities is essential. In the surface treatment of the Nb cavities, on-site analysis of electropolishing solution composed of hydrofluoric acid and sulfuric acid is desired. In this work, we analyzed the electropolishing solutions containing from 1.0 g L<small><sup>−1</sup></small> to 10.0 g L<small><sup>−1</sup></small> Nb by surface-enhanced laser-induced breakdown spectroscopy (surface-enhanced LIBS) that needs only a microvolume sample and simple operations. The sample solution was trapped on porous silicon (Si) fabricated by metal-assisted etching (metal-assisted chemical etching) through a wiping process. Nb emission lines were detected with low laser energy irradiation (2.0 mJ per pulse) onto the substrate. A regression model was built by partial least squares regression, and the Nb concentrations of test samples were predicted with a mean absolute error of approximately 0.4 g L<small><sup>−1</sup></small>. To the best of our knowledge, this is the first report that applied LIBS to the analysis of the highly toxic electropolishing solution. The proposed method would be helpful for the quality control of surface treatment and the efficient use of solution.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 10","pages":" 2532-2542"},"PeriodicalIF":3.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}