Applied Numerical Mathematics最新文献

筛选
英文 中文
Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources 处理具有不连续系数和狄拉克曲线源的三维扩散问题
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-12 DOI: 10.1016/j.apnum.2024.09.012
{"title":"Treatment of 3D diffusion problems with discontinuous coefficients and Dirac curvilinear sources","authors":"","doi":"10.1016/j.apnum.2024.09.012","DOIUrl":"10.1016/j.apnum.2024.09.012","url":null,"abstract":"<div><div>Three-dimensional diffusion problems with discontinuous coefficients and unidimensional Dirac sources arise in a number of fields. The statement we pursue is a singular-regular expansion where the singularity, capturing the stiff behavior of the potential, is expressed by a convolution formula using the Green kernel of the Laplace operator. The correction term, aimed at restoring the boundary conditions, fulfills a variational Poisson equation set in the Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>, which can be approximated using finite element methods. The mathematical justification of the proposed expansion is the main focus, particularly when the variable diffusion coefficients are continuous, or have jumps. A computational study concludes the paper with some numerical examples. The potential is approximated by a combined method: (singularity, by integral formulas, correction, by linear finite elements). The convergence is discussed to highlight the practical benefits brought by different expansions, for continuous and discontinuous coefficients.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations 针对二维非线性麦克斯韦方程的四阶 Runge-Kutta 指数时差和三角谱元法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.008
{"title":"A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations","authors":"","doi":"10.1016/j.apnum.2024.09.008","DOIUrl":"10.1016/j.apnum.2024.09.008","url":null,"abstract":"<div><p>In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconvergent scheme for a system of green Fredholm integral equations 绿色弗雷德霍姆积分方程系统的超融合方案
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.009
{"title":"Superconvergent scheme for a system of green Fredholm integral equations","authors":"","doi":"10.1016/j.apnum.2024.09.009","DOIUrl":"10.1016/j.apnum.2024.09.009","url":null,"abstract":"<div><p>In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi><mo>+</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Theoretical findings are validated through extensive numerical experiments.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical method for Ψ-fractional integro-differential equations by Bell polynomials 用贝尔多项式计算Ψ-分式积分微分方程的数值方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.011
{"title":"A numerical method for Ψ-fractional integro-differential equations by Bell polynomials","authors":"","doi":"10.1016/j.apnum.2024.09.011","DOIUrl":"10.1016/j.apnum.2024.09.011","url":null,"abstract":"<div><p>In this work, we focus on a class of Ψ− fractional integro-differential equations (Ψ-FIDEs) involving Ψ-Caputo derivative. The objective of this paper is to derive the numerical solution of Ψ-FIDEs in the truncated Bell series. Firstly, Ψ-FIDEs by using the definition of Ψ− Caputo derivative is converted into a singular integral equation. Then, a computational procedure based on the Bell polynomials, Gauss-Legendre quadrature rule, and collocation method is developed to effectively solve the singular integral equation. The convergence of the approximation obtained in the presented strategy is investigated. Finally, the effectiveness and superiority of our method are revealed by numerical samples. The results of the suggested approach are compared with the results obtained by extended Chebyshev cardinal wavelets method (EChCWM).</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation 双谐波非线性薛定谔方程时间分割正弦伪谱法的最佳误差边界
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-11 DOI: 10.1016/j.apnum.2024.09.007
{"title":"Optimal error bounds of the time-splitting sine-pseudospectral method for the biharmonic nonlinear Schrödinger equation","authors":"","doi":"10.1016/j.apnum.2024.09.007","DOIUrl":"10.1016/j.apnum.2024.09.007","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We propose a time-splitting sine-pseudospectral (TSSP) method for the biharmonic nonlinear Schrödinger equation (BNLS) and establish its optimal error bounds. In the proposed TSSP method, we adopt the sine-pseudospectral method for spatial discretization and the second-order Strang splitting for temporal discretization. The proposed TSSP method is explicit and structure-preserving, such as time symmetric, mass conservation and maintaining the dispersion relation of the original BNLS in the discretized level. Under the assumption that the solution of the one dimensional BNLS belongs to &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;9&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we prove error bounds at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm respectively, for the proposed TSSP method, with &lt;em&gt;τ&lt;/em&gt; time step and &lt;em&gt;h&lt;/em&gt; mesh size. For general dimensional cases with &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the error bounds are at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; norm under the assumption that the exact solution is in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The proof is based on the bound of the Lie-commutator for the local truncation error, discrete Gronwall inequality, energy method and the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;- or &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution which implies the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-bound of the numerical solution. Finally, extensive numerical results are reported to confirm our optimal error bounds and to demonstrate rich phenomena of the","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method 基于量规-乌泽法的密度可变多流体力学方程数值近似法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.006
{"title":"Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method","authors":"","doi":"10.1016/j.apnum.2024.09.006","DOIUrl":"10.1016/j.apnum.2024.09.006","url":null,"abstract":"<div><p>In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility 具有一般流动性的艾伦-卡恩方程的线性二阶无条件最大约束原则保留方案
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-10 DOI: 10.1016/j.apnum.2024.09.005
{"title":"A linear second order unconditionally maximum bound principle-preserving scheme for the Allen-Cahn equation with general mobility","authors":"","doi":"10.1016/j.apnum.2024.09.005","DOIUrl":"10.1016/j.apnum.2024.09.005","url":null,"abstract":"<div><p>In this work, we investigate a linear second-order numerical method for the Allen-Cahn equation with general mobility. The proposed scheme is a combination of the two-step first- and second-order backward differentiation formulas for time approximation and the central finite difference for spatial discretization, two additional stabilizing terms are also included. The discrete maximum bound principle of the numerical scheme is rigorously proved under mild constraints on the adjacent time-step ratio and the two stabilization parameters. Furthermore, the error estimates in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the case of constant mobility and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-norm for the general mobility case, as well as the energy stability for both cases are obtained. Finally, we present extensive numerical experiments to validate the theoretical results, and develop an adaptive time-stepping strategy to demonstrate the performance of the proposed method.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type 对流扩散型多尺度二维抛物奇异扰动系统的高效均匀收敛方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-06 DOI: 10.1016/j.apnum.2024.09.002
{"title":"An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type","authors":"","doi":"10.1016/j.apnum.2024.09.002","DOIUrl":"10.1016/j.apnum.2024.09.002","url":null,"abstract":"<div><p>In this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002344/pdfft?md5=113f28e912fce44133fdc1f89be35392&pid=1-s2.0-S0168927424002344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilized explicit peer methods with parallelism across the stages for stiff problems 针对僵化问题的跨阶段并行稳定显式同行方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.08.023
{"title":"Stabilized explicit peer methods with parallelism across the stages for stiff problems","authors":"","doi":"10.1016/j.apnum.2024.08.023","DOIUrl":"10.1016/j.apnum.2024.08.023","url":null,"abstract":"<div><p>In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) <span><span>[5]</span></span> for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.</p><p>In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and reliable algorithms for computing the zeros of Althammer polynomials 计算阿尔塔默多项式零点的快速可靠算法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-09-05 DOI: 10.1016/j.apnum.2024.09.004
{"title":"Fast and reliable algorithms for computing the zeros of Althammer polynomials","authors":"","doi":"10.1016/j.apnum.2024.09.004","DOIUrl":"10.1016/j.apnum.2024.09.004","url":null,"abstract":"<div><p>In this manuscript, we propose a stable algorithm for computing the zeros of Althammer polynomials. These polynomials are orthogonal with respect to a Sobolev inner product, and are even if their degree is even, odd otherwise. Furthermore, their zeros are real, distinct, and located inside the interval <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. The Althammer polynomial <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of degree <em>n</em> satisfies a long recurrence relation, whose coefficients can be arranged into a Hessenberg matrix of order <em>n</em>, with eigenvalues equal to the zeros of the considered polynomial.</p><p>Unfortunately, the eigenvalues of this Hessenberg matrix are very ill–conditioned, and standard balancing procedures do not improve their condition numbers. Here, we introduce a novel algorithm for computing the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, which first transforms the Hessenberg matrix into a similar symmetric tridiagonal one, i.e., a matrix whose eigenvalues are perfectly conditioned, and then computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of the latter tridiagonal matrix. Moreover, we propose a second algorithm, faster but less accurate than the former one, which computes the zeros of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> as the eigenvalues of a truncated Hessenberg matrix, obtained by properly neglecting some diagonals in the upper part of the original matrix. The computational complexity of the proposed algorithms are, respectively, <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></math></span>, with <span><math><mi>ℓ</mi><mo>≪</mo><mi>n</mi></math></span> in general.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424002356/pdfft?md5=5d69aaffe1451682d680a99c82c21156&pid=1-s2.0-S0168927424002356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信