{"title":"About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam","authors":"A. Perelomova","doi":"10.24425/aoa.2022.142009","DOIUrl":"https://doi.org/10.24425/aoa.2022.142009","url":null,"abstract":"The dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma. It is shown that the divergence of a beam and its thermal self-action is unusual in some particular cases of parallel propagation ( θ = 0 ) and has no analogues in the dynamics of the Newtonian beams. The nonlinear attenuation of Newtonian beams leads to their defocusing in gases, whereas the unusual cases correspond to the focusing in a presence of magnetic field. The examples of numerical calculations of thermal self-action of magnetoacoustic beams with shock fronts are considered in the usual and unusual cases of diffraction concerning stationary and non-stationary self-action. It is discovered that the diffraction is more ( θ = 0 ) or less ( θ = π / 2 ) manifested as compared to that of the Newtonian beams. The beams which propagate oblique to the magnetic field do not reveal diffraction. The special case, when the sound and Alfvénic speeds are equal, is discussed. This magnetosonic beams incorporate acoustic and Alfvénic properties and do not undergo diffraction in this particular case.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47820090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Cold Eddy on Acoustic Propagation (Case Study: Eddy in the Persian Gulf)","authors":"Omid Mahpeykar, A. Larki, M. A. Nasab","doi":"10.24425/aoa.2022.142015","DOIUrl":"https://doi.org/10.24425/aoa.2022.142015","url":null,"abstract":"It is essential for oceanographers to study the effects of marine phenomena such as currents, surface mixed layer, eddies, internal waves, and other ocean features on acoustic propagation, as most marine measurement equipment operates on this basis, like sonar. The eddy impact on acoustic transmission in the marine environment is very significant because changes in temperature and salinity disrupt the sound speed due to the presence of eddy, thus the acoustic propagation in the sea. Although cold eddies are in the Persian Gulf widely, one eddy is selected to study their impacts on acoustic propagation because they have similar properties in terms of temperature and salinity. In this research, after identifying eddies in the Persian Gulf automatically, the effect of a cold eddy on acoustic propagation was investigated at different depths using the BELLHOP model. Most eddies are cyclonic with 5–10 km of radius based on algorithm outputs. Studies on the lifespan of eddies showed that the occurrence of cyclonic eddies with a lifespan of more than three days is more than anticyclonic ones. Examination of the eddy effect on acoustic propagation showed that the transmission loss (TL) during the progress of the acoustic wave across the eddy increases with increasing the depth of the sound source. Also, the presence of cold eddy compared to the conditions it does not exist increases the transmission loss. The study of three-dimensional acoustic propagation also confirmed the obtained results in two-dimensional mode and clearly showed the role of cold eddy in increasing the TL.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41489808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Lun Hsueh, Jin-Peng Chen, LU Bing-Yuh, Wu Huey-Dong, Pei-Yi Liu
{"title":"Comparison of Moving Average and Differential Operation for Wheeze Detection in Spectrograms","authors":"Meng-Lun Hsueh, Jin-Peng Chen, LU Bing-Yuh, Wu Huey-Dong, Pei-Yi Liu","doi":"10.24425/aoa.2022.142012","DOIUrl":"https://doi.org/10.24425/aoa.2022.142012","url":null,"abstract":"A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion, MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables efficient signal preprocessing for spectrograms.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48797273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perfect Absorption for Modulus-Near-Zero Acoustic Metamaterial in Air or Underwater at Low-Frequency","authors":"F. N. Gaafer","doi":"10.24425/aoa.2022.140729","DOIUrl":"https://doi.org/10.24425/aoa.2022.140729","url":null,"abstract":"We theoretically propose a method to achieve an optimum absorbing material through a modulus-near-zero (MNZ) metamaterial immersed in air or water with a change in slit width part. The destructive interference has paved the way to achieve perfect absorption (PA). Depending upon theoretical analysis, an acoustic meta-material (AMMs) that supports resonance with a monopole (140 Hz) is developed to construct a low-frequency sound-absorbing technology. The dissipative loss effect can be by attentively controlling onto slit width to achieve perfect absorption. When there are thin slit width and visco-thermal losses in the structure, it is observed that they lead to high absorption. We use finite element simulations via COMSOL Multiphysics software to theoretical measurement in impedance tube and show the influence of structural parameters in both me-diums. The results are of extraordinary correspondence at low frequency to achieve optimum perfect absorption (99%). That might support AMMs to actual engineering-related applications in the process of mitigating noise, slow sound trapping","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49024574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"19th Symposium on New Trends in Audio and Video Technology NTAV2022, October 13 – 15, 2022, Wroclaw, Poland","authors":"Piotr, Tomasz, Bożena","doi":"10.24425/aoa.2022.142904","DOIUrl":"https://doi.org/10.24425/aoa.2022.142904","url":null,"abstract":"or instability of wireless network. Maintaining correct synchronization is necessary to prevent phase issues and maintain proper stereo or multichannel imaging. The author presents an automated method of interspeaker synchronization measurement of such systems, done by calculation of cross-correlation between output signals captured by microphones. Effects of using different types of measurement signals are evaluated. The method is tested with a synthetic test case, using microphones in a controlled environment with wired speakers, and with a real system consisting of a pair of synchronized wireless speakers.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42516282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Work Efficiency Prediction of Persons Working in Traffic Noise Environment Using Adaptive Neuro Fuzzy Inference System (ANFIS) Models","authors":"M. Yadav, B. Tandel","doi":"10.24425/aoa.2021.139644","DOIUrl":"https://doi.org/10.24425/aoa.2021.139644","url":null,"abstract":"A study was carried to assess the effect of traffic noise pollution on the work efficiency of shopkeepers in Indian urban areas. For this, an extensive literature survey was done on previous research done on similar topics. It was found that personal characteristics, noise levels in an area, working conditions of shopkeepers, type of task they are performing are the most significant factors to study effects on work efficiency. Noise monitoring, as well as a questionnaire survey, was done in Surat city to collect desired data. A total of 17 parameters were considered for assessing work efficiency under the influence of traffic noise. It is recommended that not more than 6 parameters should be considered for ANFIS modeling hence, before opting for the ANFIS modeling, most affecting parameters to work efficiency under the influence of traffic noise, was chosen by Structural Equation Model (SEM). As a result of the SEM model, two ANFIS prediction models were developed to predict the effect on work efficiency under the influence of traffic noise. R squared for model 1, for training data was 0.829 and for testing data, it was 0.727 and R squared for model 2 for training data was 0.828 and for testing data, it was 0.728. These two models can be used satisfactorily for predicting work efficiency under traffic noise environment for open shutter shopkeepers in tier II Indian cities.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42635355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microphone Based Acoustic Vector Sensor for Direction Finding with Bias Removal","authors":"M. Wajid, Arun Kumar","doi":"10.24425/aoa.2022.141646","DOIUrl":"https://doi.org/10.24425/aoa.2022.141646","url":null,"abstract":".","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48501953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrasonic Simulation Research of Two-Dimensional Distribution in Gas-Solid Two-Phase Flow by Backscattering Method","authors":"Jinhui Fan, Fei Wang","doi":"10.24425/aoa.2022.142011","DOIUrl":"https://doi.org/10.24425/aoa.2022.142011","url":null,"abstract":"The two-dimensional distribution of gas-solid flow parameters is a great research significance to reflect the actual situation in industry. The commonly used method is the ultrasonic tomography method, in which multiple probes are arranged at various angles, or the measurement device is rotated as that in medicine, but in most industrial situations, it is impossible to install probes at all angles or rotate the measured pipe. The backscattering method, however, uses only one transducer to both transmit and receive signals, and the twodimensional information is obtained by only rotating the transducer. Ultrasound attenuates greatly in the air, and the attenuation changes with frequency. Therefore, COMSOL is used to study the reflection of particles with different radii in the air to ultrasound with various frequencies. It is found that the backscattering equivalent voltage is the largest when the product of ultrasonic frequency and particle radius is about 27.78 Hz ⋅m, and the particle concentration of 30% causes the strongest backscattering. The simulated results are in good agreement with the Faran backscattering model, which can provide references for selecting the appropriate frequency and obtaining the concentration when measuring gas-solid two-phase flow with the ultrasonic backscattering method.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48542133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Rattle Signal Denoising and Enhancing Method Based on Wavelet Packet Decomposition and Mathematical Morphology Filter for Vehicle","authors":"Linyuan Liang, Shuming Chen, Liao Peiran","doi":"10.24425/aoa.2022.140731","DOIUrl":"https://doi.org/10.24425/aoa.2022.140731","url":null,"abstract":"Buzz, squeak and rattle (BSR) noise has become apparent in vehicles due to the significant reductions in engine noise and road noise. The BSR often occurs in driving condition with many interference signals. Thus, the automatic BSR detection remains a challenge for vehicle engineers. In this paper, a rattle signal denoising and enhancing method is proposed to extract the rattle components from in-vehicle background noise. The proposed method combines the advantages of wavelet packet decomposition and mathematical morphology filter. The critical frequency band and the information entropy are introduced to improve the wavelet packet threshold denoising method. A rattle component enhancing method based on multi-scale compound morphological filter is proposed, and the kurtosis values are introduced to determine the best parameters of the filter. To examine the feasibility of the proposed algorithm, synthetic brake caliper rattle signals with various SNR ratios are prepared to verify the algorithm. In the validation analysis, the proposed method can well remove the disturbance background noise in the signal and extract the rattle components with well SNR ratios. It is believed that the algorithm discussed in this paper can be further applied to facilitate the detection of the vehicle rattle noise in industry.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48963425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of Sound Insulation Through Double-Panel Structure by Using Hybrid Local Resonator Array","authors":"RI Kyong-Su, Myong-jin Kim","doi":"10.24425/aoa.2022.142907","DOIUrl":"https://doi.org/10.24425/aoa.2022.142907","url":null,"abstract":"In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42541175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}