Aquatic Geochemistry最新文献

筛选
英文 中文
Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin 柴达木盆地北缘塔塔冷河的溶质来源和硼富集机制
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-04-25 DOI: 10.1007/s10498-024-09427-6
Wenxia Li, Zhanjie Qin, Weiliang Miao, Yulong Li, Wenjing Chang, Yongsheng Du, Binkai Li, Xiying Zhang
{"title":"Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin","authors":"Wenxia Li,&nbsp;Zhanjie Qin,&nbsp;Weiliang Miao,&nbsp;Yulong Li,&nbsp;Wenjing Chang,&nbsp;Yongsheng Du,&nbsp;Binkai Li,&nbsp;Xiying Zhang","doi":"10.1007/s10498-024-09427-6","DOIUrl":"10.1007/s10498-024-09427-6","url":null,"abstract":"<div><p>The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ<sup>11</sup>B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"97 - 119"},"PeriodicalIF":1.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140655924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin and Evolution of Deep K-Rich Confined Brine in Mahai Basin, Qinghai–Tibet Plateau 青藏高原马海盆地深层富钾封闭卤水的起源与演化
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-04-21 DOI: 10.1007/s10498-024-09424-9
Fukang Yang, Qishun Fan, Guang Han, Wanlu Wang, Jiubo Liu, Hongkui Bai
{"title":"Origin and Evolution of Deep K-Rich Confined Brine in Mahai Basin, Qinghai–Tibet Plateau","authors":"Fukang Yang,&nbsp;Qishun Fan,&nbsp;Guang Han,&nbsp;Wanlu Wang,&nbsp;Jiubo Liu,&nbsp;Hongkui Bai","doi":"10.1007/s10498-024-09424-9","DOIUrl":"10.1007/s10498-024-09424-9","url":null,"abstract":"<div><p>Mahai Basin (MH), located in the northern Qaidam Basin (QB), possesses abundant K-rich brine resources. The investigation on the origin of deep K-rich confined brine and the variations in K–Mg elements corresponding to the evolution in MH shed light on the significance of assessment and utilization of brine deposits. This study presents multiple isotopes (δ<sup>18</sup>O–δD, <sup>87</sup>Sr/<sup>86</sup>Sr) and hydrochemical characteristics for various waters (including river water, surface brine, intercrystalline brine, confined brine and anticlinal brine) in the MH. Our findings corroborate that: (1) confined brine exhibits relatively high K<sup>+</sup> (average value of 6.88 g/L) and low Ca<sup>2+</sup>–Sr<sup>2+</sup> concentrations, compared to anticlinal brine, and its chemical composition resembles the evolution of Yuqia River in Ca–SO<sub>4</sub>–HCO<sub>3</sub> diagram, suggesting that contemporary river water is the primary source of confined brine. (2) The δ<sup>18</sup>O–δD values of confined brine in MH ranged from − 17.80 to − 27.40‰ and 1.50 to 2.40‰, respectively, and fall on the right field of the local evaporation line, indicating successive evaporation and concentration processes. (3) The <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.71142–0.71145) of confined brine fall between river water (0.71150–0.71183) and anticlinal brine (0.71135), combining with river water and confined brine which exhibit low Sr content, and further confirming the origin of confined brine is a mixture by river and anticlinal brine and much river recharge budget. (4) Considering the evolution of sedimentary facies (Dezongmahai Lake area as an example) and the gradual increase in K and Mg contents in MH, the enrichment of K and Mg exhibits a certain correlation with the evolution of MH. Notably, the brine in the northeast of the basin displays the highest levels of K and Mg, indicating that this region serves as the ultimate depositional center.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"239 - 258"},"PeriodicalIF":1.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics and Origin of Brine Aquifers Porosity in Quaternary Salt Lake: A Case Study in Mahai Salt Lake, Qaidam Basin 第四纪盐湖卤水含水层孔隙度的特征和起源:柴达木盆地马海盐湖案例研究
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-04-17 DOI: 10.1007/s10498-024-09426-7
Jie Ren, Quansheng Zhao, Shuya Hu
{"title":"Characteristics and Origin of Brine Aquifers Porosity in Quaternary Salt Lake: A Case Study in Mahai Salt Lake, Qaidam Basin","authors":"Jie Ren,&nbsp;Quansheng Zhao,&nbsp;Shuya Hu","doi":"10.1007/s10498-024-09426-7","DOIUrl":"10.1007/s10498-024-09426-7","url":null,"abstract":"<div><p>Brine groundwater in Quaternary salt lakes is widely exploited to extract potassium, lithium, and boron; the complex hydrogeological parameters of brine aquifers could cause significant difficulties in brine resource assessment and exploitation. However, the origin and porosity of brine aquifers remain unclear. This study presents an approach that utilizes geochemical indicator analysis with paleogeographic reconstruction to better assess porosity in salt lake aquifers. We identified 15 representative boreholes in Mahai Salt Lake, and the lithology, porosity, and chloride contents of their respective sediments, the pore porosity of each borehole in the study area ranges from 38.17 to 0.51%, the average chloride content of each borehole ranges from 26.63 to 38.74%, found that the vertical porosity fluctuations of halite deposits were significantly larger than those of detrital deposits, the sediments in the boreholes consisted predominantly of halite-containing debris or fine-debris-containing halite, reflecting the paleoenvironmental signatures of the salt lake. According to lithology and sedimentary environment, four brine aquifers were classified and the chloride and porosity distribution characteristics in the I–IV brine aquifers were further illustrated. Based on information of paleolake evolution in Qaidam Basin, we established a conceptual model to identify the impact factors for the porosity distribution pattern in the I–IV brine aquifers.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"259 - 271"},"PeriodicalIF":1.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Role of Capillarity in Arsenic Mobility: Insights from a Sedimentary–Karstic Aquifer in Semiarid Soil 揭示毛细管在砷迁移中的作用:半干旱土壤中沉积-喀斯特含水层的启示
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-04-12 DOI: 10.1007/s10498-024-09422-x
Andrea Gómez-Hernández, Nadia Martínez-Villegas, Jejanny Lucero Hernández-Martínez, Javier Aguilar Carrillo de Albornoz, Diana Meza-Figueroa
{"title":"Unraveling the Role of Capillarity in Arsenic Mobility: Insights from a Sedimentary–Karstic Aquifer in Semiarid Soil","authors":"Andrea Gómez-Hernández,&nbsp;Nadia Martínez-Villegas,&nbsp;Jejanny Lucero Hernández-Martínez,&nbsp;Javier Aguilar Carrillo de Albornoz,&nbsp;Diana Meza-Figueroa","doi":"10.1007/s10498-024-09422-x","DOIUrl":"10.1007/s10498-024-09422-x","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Arsenic (As) contamination in soil and groundwater poses significant environmental and human health concerns. While chemical mechanisms like solubility equilibria, oxidation–reduction, and ionic exchange reactions have been studied to understand As retention in soil, the influence of capillarity on As transport remains poorly understood, particularly in semiarid soils with broader capillary fringes. This research aims to shed light on the capillary contribution to As attenuation and mobilization in the groundwater, focusing on degraded soil in the northeast of San Luis Potosí, Mexico. Groundwater surveys revealed a remarkable depletion of As concentrations from 91.50 to 11.27 mg L&lt;sup&gt;−1&lt;/sup&gt;, indicating potential As sorption by the underlying shallow aquifer. We examined soil samples collected from the topsoil to the saturated zone using advanced analytical techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and wet chemical analyses. Our findings unveiled the presence of three distinct zones in the soil column: (1) the A horizon with heavy metals, (2) dispersed calcium sulfate dihydrate crystals and stratified gypsum, and (3) a higher concentration of arsenic in the capillary fringe. Notably, the capillary fringe exhibited a significant accumulation of As, constituting 40% (169.22 mg kg&lt;sup&gt;−1&lt;/sup&gt;) of the total arsenic proportion accumulated (359.27 mg kg&lt;sup&gt;−1&lt;/sup&gt;). The arsenic behavior in the capillary fringe solid phase correlated with total iron behavior, but they were distributed among different mineral fractions. The labile fraction, rich in arsenic, contrasted with the more recalcitrant fractions, which exhibited higher iron content. Further, thermodynamic stability assessments using the geochemical code PHREEQC revealed the critical role of Ca&lt;sub&gt;5&lt;/sub&gt;H&lt;sub&gt;2&lt;/sub&gt;(AsO&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;4&lt;/sub&gt;:9H&lt;sub&gt;2&lt;/sub&gt;O in controlling HAsO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;2−&lt;/sup&gt; and the formation of HAsO&lt;sub&gt;4&lt;/sub&gt;:2H&lt;sub&gt;2&lt;/sub&gt;O and CaHAsO&lt;sub&gt;4&lt;/sub&gt;:H&lt;sub&gt;2&lt;/sub&gt;O. During experimentation, we observed arsenate dissolution, indicating the potential mobilization of As in aqueous species. This mobilization was found to vary depending on redox conditions and may become labile during flooding events or water table variations, especially when As concentrations are low compared to metal cations, as demonstrated in our experiments. Our research underscores the significance of developing accurate geochemical conceptual models that incorporate capillarity to predict As leaching and remobilization accurately. This study presents novel insights into the understanding of As transport mechanisms and suggests the necessity of considering capillarity in geochemical models. By comprehending the capillary contribution to As attenuation, we can develop effective strategies to mitigate As contamination in semiarid soils and safeguard groundwater quality, thereby addressing crucial environmental and public he","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 2","pages":"49 - 71"},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source and Formation of Boron Deposits in Mahai Basin on the Northern Qinghai-Tibet Plateau: Clues from Hydrochemistry and Boron Isotopes 青藏高原北部马海盆地硼矿床的来源与形成:水化学和硼同位素提供的线索
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-04-08 DOI: 10.1007/s10498-024-09425-8
Honglu Xiang, Qishun Fan, Qingkuan Li, Yongsheng Du, Guang Han, Jiubo Liu, Hongkui Bai
{"title":"Source and Formation of Boron Deposits in Mahai Basin on the Northern Qinghai-Tibet Plateau: Clues from Hydrochemistry and Boron Isotopes","authors":"Honglu Xiang,&nbsp;Qishun Fan,&nbsp;Qingkuan Li,&nbsp;Yongsheng Du,&nbsp;Guang Han,&nbsp;Jiubo Liu,&nbsp;Hongkui Bai","doi":"10.1007/s10498-024-09425-8","DOIUrl":"10.1007/s10498-024-09425-8","url":null,"abstract":"<div><p>There are typical salt lake-type borate deposits in the northern Qaidam Basin, which are mainly distributed in Da Qaidam Lake (DQL), Xiao Qaidam Lake, and Mahai Basin (MHB). DQL has deposited famous solid borates and enriched a large number of brine boron deposits. It is the earliest industrial production base in China. Nanbaxian (NBX) to the west of DQL is a unique area where solid borates are deposited in MHB. Although there are three salt lakes in the MHB, borate deposits were only deposited in the salt pits of NBX, and the formation process of these borate deposits remains to be clarified. In this study, the major elements, boron contents, and d<sup>11</sup>B values in the water and sediments of NBX were investigated in conjunction with the B-Na-Mg equivalence diagrams and relevant data from other salt lakes to elucidate the source of boron in MHB and the depositional conditions of borate minerals in NBX. The results are as follows: (1) The source of boron in NBX differs from that in three salt lakes in MHB. The source in NBX is mainly constrained by the weathering and fluid-rock (Boron-bearing ultra-high pressure metamorphic belt) interaction, while that in Dezongmahai and Niulangzhinv–Balunmahai lakes are primarily controlled by river water and anticlinal brine, respectively. (2) The high boron content (0.28 to 41.38 mg/L) and low d<sup>11</sup>B values (- 34.71‰ to - 6.14‰) of the water-soluble phase of sediments in NBX are consistent with geochemical characteristics (d<sup>11</sup>B: - 23.67‰ to - 3.0‰) of borates in DQL, demonstrating that the re-dissolution of borate deposits in NBX. (3) Deposition of borate minerals in the MHB requires ionic equivalents of Mg, Na, and B to 0.02 to 0.4, 0.25 to 0.75, and 0.2 to 0.7, respectively. Additionally, the brine hydrochemistry in which the borate are deposited must be of the carbonate or sulfate type, and the brine water should be greater than 8 in pH and 400 mg/L in boron content. This study provides a theoretical basis for exploring and exploiting salt lake-type borate deposits.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"143 - 161"},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Salinity Effect on Absorbance and Fluorescence of Chernozem Water-Extractable Organic Matter 盐度对切尔诺泽姆水提取有机物吸收率和荧光的直接影响
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-02-24 DOI: 10.1007/s10498-024-09423-w
Vladimir A. Kholodov, Natalia N. Danchenko, Aliya R. Ziganshina, Nadezhda V. Yaroslavtseva, Igor P. Semiletov
{"title":"Direct Salinity Effect on Absorbance and Fluorescence of Chernozem Water-Extractable Organic Matter","authors":"Vladimir A. Kholodov,&nbsp;Natalia N. Danchenko,&nbsp;Aliya R. Ziganshina,&nbsp;Nadezhda V. Yaroslavtseva,&nbsp;Igor P. Semiletov","doi":"10.1007/s10498-024-09423-w","DOIUrl":"10.1007/s10498-024-09423-w","url":null,"abstract":"<div><p>Soil-derived dissolved organic matter (DOM) has a significant impact on aquatic ecosystems. Identifying the fluorescence signatures of DOM from different soils in river and sea waters can provide valuable insights into its migration patterns. This makes crucial assessing the contributions of pH, salinity, and other milieu parameters to the variability of DOM optical properties. Present study investigates the changes in DOM of Chernozems under varying salinity using UV–visible absorbance spectroscopy and 3D-fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC). Water-extractable organic matter (WEOM) extracted from soils of two field experiments of contrasting land use: long-term bare fallow (LTBF) and annually mown steppe (Steppe), was used as a proxy for DOM. Diluted extracts were incubated with varying NaCl concentrations in the dark and then examined. Steppe WEOM exhibited fair constancy of optical parameters under increasing salinity, while significant changes of the optical indices and of PARAFAC components’s loadings were observed for LTBF WEOM. The remarkable stability of the Steppe WEOM can be attributed to its chemical diversity. Two distinct and sufficiently stable humic-like PARAFAC components have the potential to serve as markers of Chernozem DOM. The findings clearly demonstrate that salinity itself slightly reduces absorption and fluorescence and changes some optical indices of WEOM of Chernozems.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 1","pages":"31 - 48"},"PeriodicalIF":1.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-liquid Equilibria (SLE) of the System Containing the Sulfates of Lithium and Potassium at 303.2 and 318.2 K 开氏 303.2 度和开氏 318.2 度含硫酸锂和硫酸钾体系的固液平衡 (SLE)
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-02-04 DOI: 10.1007/s10498-023-09420-5
Zhihao Yao, Xudong Yu, Zhixing Zhao, Xia Feng, Yousheng Yang, Qi Li, Ying Zeng, Hao Jiang, Yiran Li
{"title":"Solid-liquid Equilibria (SLE) of the System Containing the Sulfates of Lithium and Potassium at 303.2 and 318.2 K","authors":"Zhihao Yao,&nbsp;Xudong Yu,&nbsp;Zhixing Zhao,&nbsp;Xia Feng,&nbsp;Yousheng Yang,&nbsp;Qi Li,&nbsp;Ying Zeng,&nbsp;Hao Jiang,&nbsp;Yiran Li","doi":"10.1007/s10498-023-09420-5","DOIUrl":"10.1007/s10498-023-09420-5","url":null,"abstract":"<div><p>The solid-liquid phase equilibria of aqueous system containing the sulfates of lithium and potassium (Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O) at <i>T</i> = 303.2 and 318.2 K were done by isothermal dissolution method. The phase equilibria data (solubility, density, and refractive index) of the system were determined experimentally. The corresponding solid-liquid phase diagram, density/refractive index versus composition diagrams, were plotted. There are two ternary invariant points and three crystallization regions corresponding to Li<sub>2</sub>SO<sub>4</sub>·H<sub>2</sub>O, LiKSO<sub>4</sub>, and K<sub>2</sub>SO<sub>4</sub> in the phase diagram of system Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O at 303.2 and 318.2 K. A comparision of system Li<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O at different temperature (<i>T</i> = 288.2, 303.2, 318.2 and 348.2 K) shown that the double salt LiKSO<sub>4</sub> was formed in the above mentioned temperatures, and the crystallization region of the LiKSO<sub>4</sub> increases gradually with the increase of temperature.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"273 - 286"},"PeriodicalIF":1.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-Term Spatiotemporal Variability in Seawater Carbonate Chemistry at Two Contrasting Reef Locations in Bocas del Toro, Panama 巴拿马博卡斯德尔托罗两个不同珊瑚礁地点海水碳酸盐化学性质的短期时空变异性
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2024-02-03 DOI: 10.1007/s10498-024-09421-y
Katelin Pedersen, Tyler Cyronak, Morgan Goodrich, David I. Kline, Lauren B. Linsmayer, Ralph Torres, Martin Tresguerres, Andreas J. Andersson
{"title":"Short-Term Spatiotemporal Variability in Seawater Carbonate Chemistry at Two Contrasting Reef Locations in Bocas del Toro, Panama","authors":"Katelin Pedersen,&nbsp;Tyler Cyronak,&nbsp;Morgan Goodrich,&nbsp;David I. Kline,&nbsp;Lauren B. Linsmayer,&nbsp;Ralph Torres,&nbsp;Martin Tresguerres,&nbsp;Andreas J. Andersson","doi":"10.1007/s10498-024-09421-y","DOIUrl":"10.1007/s10498-024-09421-y","url":null,"abstract":"<div><p>There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 1","pages":"1 - 29"},"PeriodicalIF":1.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-024-09421-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental Variations and Mechanisms of Brines in the Context of Large-Scale Exploitation: A Case Study of Xitaijnar Salt Lake, Qaidam Basin 大规模开采背景下卤水的元素变化和机制:柴达木盆地西台吉纳尔盐湖案例研究
IF 1.7 4区 地球科学
Aquatic Geochemistry Pub Date : 2023-12-20 DOI: 10.1007/s10498-023-09419-y
Zhanjie Qin, Qingkuan Li, Wenxia Li, Qishun Fan, Tianyuan Chen, Chan Wu, Jianping Wang, Fashou Shan
{"title":"Elemental Variations and Mechanisms of Brines in the Context of Large-Scale Exploitation: A Case Study of Xitaijnar Salt Lake, Qaidam Basin","authors":"Zhanjie Qin,&nbsp;Qingkuan Li,&nbsp;Wenxia Li,&nbsp;Qishun Fan,&nbsp;Tianyuan Chen,&nbsp;Chan Wu,&nbsp;Jianping Wang,&nbsp;Fashou Shan","doi":"10.1007/s10498-023-09419-y","DOIUrl":"10.1007/s10498-023-09419-y","url":null,"abstract":"<div><p>There is limited research on the variations in brine element changes and the factors that influence them during large-scale exploitation. The Xitaijnar Salt Lake in the Qaidam Basin is a large brine lithium deposit. In this study, we investigated the variations in chemical composition and the factors that influence intercrystalline brine at different time periods. Hydrochemistry, mineralogy, and hydrogeochemical simulation methods were employed to understand the brine evolution. Our results indicate that after nearly 20 years of exploitation, the intercrystalline brine still belongs to the magnesium sulfate subtype, with only slight variations in salinity. The concentrations of Na, K, and SO<sub>4</sub> showed a slight increase, while the content of Mg and Cl decreased slightly. The concentrations of B and Li exhibited minor fluctuations. The provenance, water level, and hydraulic connection had minimal influence on the chemical composition of the intercrystalline brine. By contrast, the dynamic dissolution and precipitation of sulfate minerals and halite, as well as drastic changes in hydrological conditions (such as floods), were identified as the main factors affecting the chemical composition of brine. With the large-scale extraction of intercrystalline brine, the content of elements in the salt lake showed a decreasing trend. This can be attributed to the fact that intercrystalline brine is formed through long-term evaporation and concentration. Therefore, during the exploitation process, it is crucial to monitor the hydrochemical variations of intercrystalline brine and understand the controlling factors. The results of this study may prove useful for the sustainable development and utilization of salt lake resources worldwide.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"121 - 141"},"PeriodicalIF":1.7,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-023-09419-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on Ikaite Growth in the Presence of Phosphate 磷存在下钛矿生长的研究
IF 1.6 4区 地球科学
Aquatic Geochemistry Pub Date : 2023-11-17 DOI: 10.1007/s10498-023-09418-z
Samuel B. Strohm, Giuseppe D. Saldi, Vasileios Mavromatis, Wolfgang W. Schmahl, Guntram Jordan
{"title":"A Study on Ikaite Growth in the Presence of Phosphate","authors":"Samuel B. Strohm,&nbsp;Giuseppe D. Saldi,&nbsp;Vasileios Mavromatis,&nbsp;Wolfgang W. Schmahl,&nbsp;Guntram Jordan","doi":"10.1007/s10498-023-09418-z","DOIUrl":"10.1007/s10498-023-09418-z","url":null,"abstract":"<div><p>Phosphate is a common component in natural growth solutions of ikaite. Although phosphate often occurs as a minor constituent, its presence may promote the formation of ikaite as it significantly inhibits the precipitation of calcite. The interactions of phosphate with ikaite and the role of a potential uptake of phosphate by ikaite, however, are poorly understood. In this study, the influence of phosphate on ikaite growth at 1 °C was investigated. Ikaite- and calcite-seeded growth experiments were conducted in cryo-mixed-flow reactors at saturation ratios 1.5 ≤ <i>Ω</i><sub>ikaite</sub> ≤ 2.9 (<i>Ω</i> = ionic activity product/solubility product). From these growth experiments, the rate constant <i>k</i> = 0.10 ± 0.03 µmol/m<sup>2</sup>/s and the reaction order <i>n</i> = 0.8 ± 0.3 were derived for ikaite. The reaction order implies a transport- or adsorption-controlled growth mechanism which supports a low energy pathway of ikaite growth via an attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes without any extensive dehydration of aqueous species as, for instance, required for calcite growth. A potential depletion of aqueous phosphate due to an uptake by ikaite growth was not detectable. Furthermore, growth retardation by phosphate, as known for calcite growth, was not evident. Thus, a significant incorporation of phosphate into growing ikaite could be precluded for the conditions applied in this study. The observed lack of incorporation of phosphate agrees with the previously suggested growth mechanism via the attachment of hydrous CaCO<sub>3</sub><sup>0</sup> complexes which likely does not facilitate substantial substitution of carbonate by phosphate ions.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"29 4","pages":"219 - 233"},"PeriodicalIF":1.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-023-09418-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信