柴达木盆地北缘塔塔冷河的溶质来源和硼富集机制

IF 1.7 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Wenxia Li, Zhanjie Qin, Weiliang Miao, Yulong Li, Wenjing Chang, Yongsheng Du, Binkai Li, Xiying Zhang
{"title":"柴达木盆地北缘塔塔冷河的溶质来源和硼富集机制","authors":"Wenxia Li,&nbsp;Zhanjie Qin,&nbsp;Weiliang Miao,&nbsp;Yulong Li,&nbsp;Wenjing Chang,&nbsp;Yongsheng Du,&nbsp;Binkai Li,&nbsp;Xiying Zhang","doi":"10.1007/s10498-024-09427-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ<sup>11</sup>B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 3","pages":"97 - 119"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin\",\"authors\":\"Wenxia Li,&nbsp;Zhanjie Qin,&nbsp;Weiliang Miao,&nbsp;Yulong Li,&nbsp;Wenjing Chang,&nbsp;Yongsheng Du,&nbsp;Binkai Li,&nbsp;Xiying Zhang\",\"doi\":\"10.1007/s10498-024-09427-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ<sup>11</sup>B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.</p></div>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"30 3\",\"pages\":\"97 - 119\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-024-09427-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-024-09427-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

作为柴达木盆地(QB)大柴达木盐湖和小柴达木盐湖的重要支流,塔拉腾河(TTR)的硼含量极高。然而,TTR 中硼的溶质来源和出处仍不清楚,这极大地阻碍了对柴达木盆地硼沉积的源-汇过程的深入了解。本研究从 TTR 地区的支流、主流、泥火山、温泉和雨水中采集了水样。通过水化学分析、正向建模和硼同位素地球化学方法,结合前人的研究成果,获得了一些发现。TTR 的水化学类型为 Ca-Mg-Cl,控制化学成分的主要机制是岩石风化。TTR 中的溶质来源主要来自蒸发岩的溶解(75.9%)和大气降水(20.8%),少量来自碳酸盐(3.1%)和硅酸盐风化(0.6%)。TTR的硼含量较高(0.89-4.30 mg/L,平均值=2.13 mg/L),δ11B值较低(0.79‰-4.71‰,平均值=4.17‰),说明硼源主要来自上游的火山泥水(56.19-199.98 mg/L,平均值=113.51 mg/L,-1.26‰-2.22‰,平均值=0.85‰)和下游印支期花岗岩附近的深层地下水的混合物。两湖硼资源的显著差异可能是由于晚更新世大秦岭湖区硼资源富集,在构造活跃期接受了古TTR携带的异常丰富的可溶性硼,而构造活动的减弱和古TTR的改道导致向大秦岭湖区供应的硼含量明显减少。这些结果有助于深入了解盐湖硼矿床的成矿机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin

Solute Sources and Mechanism of Boron Enrichment in the Tataleng River on the Northern Margin of the Qaidam Basin

The Tataleng River (TTR), as an important tributary of the Da Qaidam Salt Lake (DQSL) and Xiao Qaidam Salt Lake (XQSL) in the Qaidam Basin (QB), has an exceptionally high B content. However, the solute sources and the provenance of B in the TTR are still unclear, which significantly hinders a deeper understanding of the source–sink processes of the boron deposits in the QB. In this study, water samples were collected from tributaries, mainstreams, mud volcanoes, hot springs, and rainwater in the TTR area. Through hydrochemical analysis, forward modeling, and B isotope geochemistry methods, combined with the previous research results, some findings were obtained. The hydrochemical type of TTR is Ca–Mg–Cl, and the major mechanism of controlling chemical composition is rock weathering. The solute sources in the TTR are mainly from dissolution of evaporites (75.9%), atmospheric precipitation (20.8%), and a minor contribution from carbonates (3.1%) and silicates weathering (0.6%). The higher B content (0.89–4.30 mg/L, mean = 2.13 mg/L) and lower δ11B value (0.79‰–4.71‰, mean = 4.17‰) of the TTR indicate that the B sources are mainly from mixture of mud volcanic waters (56.19–199.98 mg/L, mean = 113.51 mg/L, − 1.26‰–2.22‰, mean = 0.85‰) in the upper reaches, and the deep groundwater near the Indosinian granite in the lower reaches. The significant difference in boron resources between the two lakes may be due to the enrichment of B in the late Pleistocene in the DQSL, which received exceptionally rich soluble B carried by the ancient TTR during an active tectonic period, while the weakening of tectonic activity and the diversion of the ancient TTR resulted in the supply of B with significantly reduced content to the XQSL. These results are helpful for a deeper understanding of the ore-forming mechanisms of the boron deposits in salt lake.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Geochemistry
Aquatic Geochemistry 地学-地球化学与地球物理
CiteScore
4.30
自引率
0.00%
发文量
6
审稿时长
1 months
期刊介绍: We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信