Integrative Biology最新文献

筛选
英文 中文
Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint. 肿瘤栓子在血管模型内的生长显示了对机械约束大小的依赖性。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2021-02-03 DOI: 10.1093/intbio/zyaa024
Jonathan Kulwatno, Jamie Gearhart, Xiangyu Gong, Nora Herzog, Matthew Getzin, Mihaela Skobe, Kristen L Mills
{"title":"Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint.","authors":"Jonathan Kulwatno,&nbsp;Jamie Gearhart,&nbsp;Xiangyu Gong,&nbsp;Nora Herzog,&nbsp;Matthew Getzin,&nbsp;Mihaela Skobe,&nbsp;Kristen L Mills","doi":"10.1093/intbio/zyaa024","DOIUrl":"https://doi.org/10.1093/intbio/zyaa024","url":null,"abstract":"<p><p>Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 μm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 1","pages":"1-16"},"PeriodicalIF":2.5,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38817709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Matrix degradation and cell proliferation are coupled to promote invasion and escape from an engineered human breast microtumor. 基质降解与细胞增殖相结合,促进了人体乳腺微肿瘤的侵袭和逃逸。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2021-02-03 DOI: 10.1093/intbio/zyaa026
Emann M Rabie, Sherry X Zhang, Andreas P Kourouklis, A Nihan Kilinc, Allison K Simi, Derek C Radisky, Joe Tien, Celeste M Nelson
{"title":"Matrix degradation and cell proliferation are coupled to promote invasion and escape from an engineered human breast microtumor.","authors":"Emann M Rabie, Sherry X Zhang, Andreas P Kourouklis, A Nihan Kilinc, Allison K Simi, Derek C Radisky, Joe Tien, Celeste M Nelson","doi":"10.1093/intbio/zyaa026","DOIUrl":"10.1093/intbio/zyaa026","url":null,"abstract":"<p><p>Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 1","pages":"17-29"},"PeriodicalIF":2.5,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856634/pdf/zyaa026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38795533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-macrophage crosstalk: how to listen. 肿瘤-巨噬细胞相声:如何聆听。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-12-30 DOI: 10.1093/intbio/zyaa023
Tuli Dey
{"title":"Tumor-macrophage crosstalk: how to listen.","authors":"Tuli Dey","doi":"10.1093/intbio/zyaa023","DOIUrl":"https://doi.org/10.1093/intbio/zyaa023","url":null,"abstract":"<p><p>The tumor microenvironment contains many cellular components influencing tumor behaviors, such as metastasis, angiogenesis and chemo-resistance. Tumor-associated macrophages (TAMs) are one of such components that can also manipulate the overall prognosis and patient survival. Analysis of tumor-macrophage crosstalk is crucial as tumor cells can polarize circulatory monocytes into TAMs. Such trans-polarization of macrophages support tumor mediated evasion and suppression of immune response. Additionally, such TAMs significantly influence tumor growth and proliferation, making them a potential candidate for precision therapeutics. However, the failure of macrophage-dependent therapies at clinical trials emphasizes the fault in current perception and research modality. This review discussed this field's progress regarding emerging model systems with a focused view on the in vitro platforms. The inadequacy of currently available models and their implications on existing studies also analyzed. The need for a conceptual and experimental leap toward a human-relevant in vitro custom-built platform for studying tumor-macrophage crosstalk is acknowledged.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 12","pages":"291-302"},"PeriodicalIF":2.5,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38619297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Novel in vitro microfluidic platform for osteocyte mechanotransduction studies. 骨细胞机械转导研究的新型体外微流控平台。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-12-30 DOI: 10.1093/intbio/zyaa025
Liangcheng Xu, Xin Song, Gwennyth Carroll, Lidan You
{"title":"Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.","authors":"Liangcheng Xu,&nbsp;Xin Song,&nbsp;Gwennyth Carroll,&nbsp;Lidan You","doi":"10.1093/intbio/zyaa025","DOIUrl":"https://doi.org/10.1093/intbio/zyaa025","url":null,"abstract":"<p><p>Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 12","pages":"303-310"},"PeriodicalIF":2.5,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38800620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial 'dark matter'. 微流体液滴中微生物亚群落的共同培养促进了微生物“暗物质”的高分辨率基因组解剖。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-11-18 DOI: 10.1093/intbio/zyaa021
James Y Tan, Sida Wang, Gregory J Dick, Vincent B Young, David H Sherman, Mark A Burns, Xiaoxia N Lin
{"title":"Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial 'dark matter'.","authors":"James Y Tan,&nbsp;Sida Wang,&nbsp;Gregory J Dick,&nbsp;Vincent B Young,&nbsp;David H Sherman,&nbsp;Mark A Burns,&nbsp;Xiaoxia N Lin","doi":"10.1093/intbio/zyaa021","DOIUrl":"10.1093/intbio/zyaa021","url":null,"abstract":"<p><p>While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 11","pages":"263-274"},"PeriodicalIF":2.5,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38516068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic. 内皮细胞顶基底极性协调了在微血管模拟物中对发光或不发光递送TNF-α的不同反应。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-11-18 DOI: 10.1093/intbio/zyaa022
Alec T Salminen, Jeffrey Tithof, Yara Izhiman, Elysia A Masters, Molly C McCloskey, Thomas R Gaborski, Douglas H Kelley, Anthony P Pietropaoli, Richard E Waugh, James L McGrath
{"title":"Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic.","authors":"Alec T Salminen,&nbsp;Jeffrey Tithof,&nbsp;Yara Izhiman,&nbsp;Elysia A Masters,&nbsp;Molly C McCloskey,&nbsp;Thomas R Gaborski,&nbsp;Douglas H Kelley,&nbsp;Anthony P Pietropaoli,&nbsp;Richard E Waugh,&nbsp;James L McGrath","doi":"10.1093/intbio/zyaa022","DOIUrl":"https://doi.org/10.1093/intbio/zyaa022","url":null,"abstract":"<p><p>Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 11","pages":"275-289"},"PeriodicalIF":2.5,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38579721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation. 用于研究肿瘤微环境诱导的免疫细胞激活的生物工程前列腺器官模型。
IF 1.5 4区 生物学
Integrative Biology Pub Date : 2020-10-16 DOI: 10.1093/intbio/zyaa020
Sheena C Kerr, Molly M Morgan, Amani A Gillette, Megan K Livingston, Karina M Lugo-Cintron, Peter F Favreau, Logan Florek, Brian P Johnson, Joshua M Lang, Melissa C Skala, David J Beebe
{"title":"A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation.","authors":"Sheena C Kerr, Molly M Morgan, Amani A Gillette, Megan K Livingston, Karina M Lugo-Cintron, Peter F Favreau, Logan Florek, Brian P Johnson, Joshua M Lang, Melissa C Skala, David J Beebe","doi":"10.1093/intbio/zyaa020","DOIUrl":"10.1093/intbio/zyaa020","url":null,"abstract":"<p><p>The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 10","pages":"250-262"},"PeriodicalIF":1.5,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9278191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. 肿瘤芯片平台询问巨噬细胞在肿瘤进展中的作用。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-09-30 DOI: 10.1093/intbio/zyaa017
Ye Bi, Venktesh S Shirure, Ruiyang Liu, Cassandra Cunningham, Li Ding, J Mark Meacham, S Peter Goedegebuure, Steven C George, Ryan C Fields
{"title":"Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression.","authors":"Ye Bi,&nbsp;Venktesh S Shirure,&nbsp;Ruiyang Liu,&nbsp;Cassandra Cunningham,&nbsp;Li Ding,&nbsp;J Mark Meacham,&nbsp;S Peter Goedegebuure,&nbsp;Steven C George,&nbsp;Ryan C Fields","doi":"10.1093/intbio/zyaa017","DOIUrl":"https://doi.org/10.1093/intbio/zyaa017","url":null,"abstract":"<p><p>Tumor-infiltrating leukocytes, in particular macrophages, play an important role in tumor behavior and clinical outcome. The spectrum of macrophage subtypes ranges from antitumor 'M1'-type to protumor 'M2'-type macrophages. Tumor-associated macrophages (TAMs) typically display phenotypic features of both M1 and M2, and the population distribution is thought to be dynamic and evolves as the tumor progresses. However, our understanding of how TAMs impact the tumor microenvironment remains limited by the lack of appropriate 3D in vitro models that can capture cell-cell dynamics at high spatial and temporal resolution. Using our recently developed microphysiological 'tumor-on-a-chip' (TOC) device, we present here our findings on the impact of defined macrophage subsets on tumor behavior. The TOC device design contains three adjacent and connected chambers in which both the upper and lower chambers are loaded with tumor cells, whereas the central chamber contains a dynamic, perfused, living microvascular network. Introduction of human pancreatic or colorectal cancer cells together with M1-polarized macrophages significantly inhibited tumor growth and tumor-induced angiogenesis. Protein analysis and antibody-based neutralization studies confirmed that these effects were mediated through production of C-X-C motif chemokines (CXCL9), CXCL10 and CXCL11. By contrast, M2-macrophages mediated increased tumor cell migration into the vascularized chamber and did not inhibit tumor growth or angiogenesis. In fact, single-cell RNA sequencing showed that M2 macrophages further segregated endothelial cells into two distinct subsets, corresponding to static cells in vessels versus active cells involved in angiogenesis. The impact of M2 macrophages was mediated mostly by production of matrix metalloproteinase 7 and angiopoietin 2. In summary, our data demonstrate the utility of the TOC device to mechanistically probe biological questions in a 3D in vitro microenvironment.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 9","pages":"221-232"},"PeriodicalIF":2.5,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38380702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional analysis of BRCA1 RING domain variants: computationally derived structural data can improve upon experimental features for training predictive models. BRCA1 RING结构域变异的功能分析:计算导出的结构数据可以改进训练预测模型的实验特征。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-09-30 DOI: 10.1093/intbio/zyaa019
Majid Masso
{"title":"Functional analysis of BRCA1 RING domain variants: computationally derived structural data can improve upon experimental features for training predictive models.","authors":"Majid Masso","doi":"10.1093/intbio/zyaa019","DOIUrl":"https://doi.org/10.1093/intbio/zyaa019","url":null,"abstract":"<p><p>Advancements in the interpretation of variants of unknown significance are critical for improving clinical outcomes. In a recent study, massive parallel assays were used to experimentally quantify the effects of missense substitutions in the RING domain of BRCA1 on E3 ubiquitin ligase activity as well as BARD1 RING domain binding. These attributes were subsequently used for training a predictive model of homology-directed DNA repair levels for these BRCA1 variants relative to wild type, which is critical for tumor suppression. Here, relative structural changes characterizing BRCA1 variants were quantified by using an efficient and cost-free computational mutagenesis technique, and we show that these features lead to improvements in model performance. This work underscores the potential for bench researchers to gain valuable insights from computational tools, prior to implementing costly and time-consuming experiments.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 9","pages":"233-239"},"PeriodicalIF":2.5,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38426639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation. 机械拉伸通过潜在的TGF-β1激活维持微组织中肌成纤维细胞的表型和功能。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2020-09-07 DOI: 10.1093/intbio/zyaa015
Matthew Walker, Michel Godin, Andrew E Pelling
{"title":"Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation.","authors":"Matthew Walker,&nbsp;Michel Godin,&nbsp;Andrew E Pelling","doi":"10.1093/intbio/zyaa015","DOIUrl":"https://doi.org/10.1093/intbio/zyaa015","url":null,"abstract":"<p><p>Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"12 8","pages":"199-210"},"PeriodicalIF":2.5,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38338866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信