肿瘤栓子在血管模型内的生长显示了对机械约束大小的依赖性。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Jonathan Kulwatno, Jamie Gearhart, Xiangyu Gong, Nora Herzog, Matthew Getzin, Mihaela Skobe, Kristen L Mills
{"title":"肿瘤栓子在血管模型内的生长显示了对机械约束大小的依赖性。","authors":"Jonathan Kulwatno,&nbsp;Jamie Gearhart,&nbsp;Xiangyu Gong,&nbsp;Nora Herzog,&nbsp;Matthew Getzin,&nbsp;Mihaela Skobe,&nbsp;Kristen L Mills","doi":"10.1093/intbio/zyaa024","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 μm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 1","pages":"1-16"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyaa024","citationCount":"4","resultStr":"{\"title\":\"Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint.\",\"authors\":\"Jonathan Kulwatno,&nbsp;Jamie Gearhart,&nbsp;Xiangyu Gong,&nbsp;Nora Herzog,&nbsp;Matthew Getzin,&nbsp;Mihaela Skobe,&nbsp;Kristen L Mills\",\"doi\":\"10.1093/intbio/zyaa024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 μm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"13 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/intbio/zyaa024\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyaa024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyaa024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

肿瘤栓塞——血管内肿瘤细胞的聚集体——是一个临床挑战,因为它们与肿瘤转移和复发增加有关。当在血管内生长时,肿瘤栓子受到由血管管状几何结构提供的独特机械约束。目前的肿瘤栓塞模型使用不受约束的多细胞肿瘤球体,忽略了这种机械相互作用。在这里,我们在硬或软的生物惰性琼脂糖基质中将淋巴管建模为直径为200 μm的通道,以创建血管样约束模型(VLCM),并分别用HCT116或SUM149PT细胞聚集体模拟结肠癌或乳腺癌肿瘤栓塞。刚性基质VLCM将肿瘤栓子限制在圆柱形通道上,导致栓子持续生长,而非受约束的球体则表现出生长速度降低。然而,软基质VLCM中的栓子形态取决于基质和细胞聚集体之间机械失配的程度。一般来说,当VLCM基质弹性模量大于栓子(EVLCM/Eemb > 1)时,栓子被约束在通道内生长
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint.

Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 μm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信