Integrative Biology最新文献

筛选
英文 中文
Macrophage circadian rhythms are differentially affected based on stimuli. 巨噬细胞的昼夜节律会因刺激而受到不同的影响。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-06-08 DOI: 10.1093/intbio/zyac007
Sujeewa S Lellupitiyage Don, Javier A Mas-Rosario, Hui-Hsien Lin, Evelyn M Nguyen, Stephanie R Taylor, Michelle E Farkas
{"title":"Macrophage circadian rhythms are differentially affected based on stimuli.","authors":"Sujeewa S Lellupitiyage Don,&nbsp;Javier A Mas-Rosario,&nbsp;Hui-Hsien Lin,&nbsp;Evelyn M Nguyen,&nbsp;Stephanie R Taylor,&nbsp;Michelle E Farkas","doi":"10.1093/intbio/zyac007","DOIUrl":"10.1093/intbio/zyac007","url":null,"abstract":"<p><p>Macrophages are white blood cells that play disparate roles in homeostasis and immune responses. They can reprogram their phenotypes to pro-inflammatory (M1) or anti-inflammatory (M2) states in response to their environment. About 8-15% of the macrophage transcriptome has circadian oscillations, including genes closely related to their functioning. As circadian rhythms are associated with cellular phenotypes, we hypothesized that polarization of macrophages to opposing subtypes might differently affect their circadian rhythms. We tracked circadian rhythms in RAW 264.7 macrophages using luminescent reporters. Cells were stably transfected with Bmal1:luc and Per2:luc reporters, representing positive and negative components of the molecular clock. Strength of rhythmicity, periods and amplitudes of time series were assessed using multiple approaches. M1 polarization decreased amplitudes and rhythmicities of Bmal1:luc and Per2:luc, but did not significantly affect periods, while M2 polarization increased periods but caused no substantial alterations to amplitudes or rhythmicity. As macrophage phenotypes are also altered in the presence of cancer cells, we tested circadian effects of conditioned media from mouse breast cancer cells. Media from highly aggressive 4T1 cells caused loss of rhythmicity, while media from less aggressive EMT6 cells yielded no changes. As macrophages play roles in tumors, and oncogenic features are associated with circadian rhythms, we tested whether conditioned media from macrophages could alter circadian rhythms of cancer cells. Conditioned media from RAW 264.7 cells resulted in lower rhythmicities and periods, but higher amplitudes in human osteosarcoma, U2OS-Per2:luc cells. We show that phenotypic changes in macrophages result in altered circadian characteristics and suggest that there is an association between circadian rhythms and macrophage polarization state. Additionally, our data demonstrate that macrophages treated with breast cancer-conditioned media have circadian phenotypes similar to those of the M1 subtype, and cancer cells treated with macrophage-conditioned media have circadian alterations, providing insight to another level of cross-talk between macrophages and cancer.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"14 3","pages":"62-75"},"PeriodicalIF":2.5,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175639/pdf/zyac007.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9609946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timelapse viability assay to detect division and death of primary multiple myeloma cells in response to drug treatments with single cell resolution. 延时活力测定法,以单细胞分辨率检测原发性多发性骨髓瘤细胞对药物治疗的分裂和死亡反应。
IF 1.5 4区 生物学
Integrative Biology Pub Date : 2022-06-08 DOI: 10.1093/intbio/zyac006
Christina Mark, Natalie S Callander, Kenny Chng, Shigeki Miyamoto, Jay Warrick
{"title":"Timelapse viability assay to detect division and death of primary multiple myeloma cells in response to drug treatments with single cell resolution.","authors":"Christina Mark, Natalie S Callander, Kenny Chng, Shigeki Miyamoto, Jay Warrick","doi":"10.1093/intbio/zyac006","DOIUrl":"10.1093/intbio/zyac006","url":null,"abstract":"<p><p>Heterogeneity among cancer cells and in the tumor microenvironment (TME) is thought to be a significant contributor to the heterogeneity of clinical therapy response observed between patients and can evolve over time. A primary example of this is multiple myeloma (MM), a generally incurable cancer where such heterogeneity contributes to the persistent evolution of drug resistance. However, there is a paucity of functional assays for studying this heterogeneity in patient samples or for assessing the influence of the patient TME on therapy response. Indeed, the population-averaged data provided by traditional drug response assays and the large number of cells required for screening remain significant hurdles to advancement. To address these hurdles, we developed a suite of accessible technologies for quantifying functional drug response to a panel of therapies in ex vivo three-dimensional culture using small quantities of a patient's own cancer and TME components. This suite includes tools for label-free single-cell identification and quantification of both cell division and death events with a standard brightfield microscope, an open-source software package for objective image analysis and feasible data management of multi-day timelapse experiments, and a new approach to fluorescent detection of cell death that is compatible with long-term imaging of primary cells. These new tools and capabilities are used to enable sensitive, objective, functional characterization of primary MM cell therapy response in the presence of TME components, laying the foundation for future studies and efforts to enable predictive assessment drug efficacy for individual patients.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"14 3","pages":"49-61"},"PeriodicalIF":1.5,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175638/pdf/zyac006.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9921203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Insights into therapeutic targets and biomarkers using integrated multi-'omics' approaches for dilated and ischemic cardiomyopathies. 修正:使用综合多“组学”方法治疗扩张型和缺血性心肌病的治疗靶点和生物标志物的见解。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-05-17 DOI: 10.1093/intbio/zyac005
{"title":"Correction to: Insights into therapeutic targets and biomarkers using integrated multi-'omics' approaches for dilated and ischemic cardiomyopathies.","authors":"","doi":"10.1093/intbio/zyac005","DOIUrl":"https://doi.org/10.1093/intbio/zyac005","url":null,"abstract":"","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"31 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88448791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement. 基于硅靶的酿酒酵母菌萜烯前体改良菌株工程。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-04-04 DOI: 10.1093/intbio/zyac003
K. Paramasivan, Aneesha Abdulla, Nabarupa Gupta, Sarma Mutturi
{"title":"In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement.","authors":"K. Paramasivan, Aneesha Abdulla, Nabarupa Gupta, Sarma Mutturi","doi":"10.1093/intbio/zyac003","DOIUrl":"https://doi.org/10.1093/intbio/zyac003","url":null,"abstract":"Systems-based metabolic engineering enables cells to enhance product formation by predicting gene knockout and overexpression targets using modeling tools. FOCuS, a novel metaheuristic tool, was used to predict flux improvement targets in terpenoid pathway using the genome-scale model of Saccharomyces cerevisiae, iMM904. Some of the key knockout target predicted includes LYS1, GAP1, AAT1, AAT2, TH17, KGD-m, MET14, PDC1 and ACO1. It was also observed that the knockout reactions belonged either to fatty acid biosynthesis, amino acid synthesis pathways or nucleotide biosynthesis pathways. Similarly, overexpression targets such as PFK1, FBA1, ZWF1, TDH1, PYC1, ALD6, TPI1, PDX1 and ENO1 were established using three different existing gene amplification algorithms. Most of the overexpression targets belonged to glycolytic and pentose phosphate pathways. Each of these targets had plausible role for improving flux toward sterol pathway and were seemingly not artifacts. Moreover, an in vitro study as validation was carried with overexpression of ALD6 and TPI1. It was found that there was an increase in squalene synthesis by 2.23- and 4.24- folds, respectively, when compared with control. In general, the rationale for predicting these in silico targets was attributed to either increasing the acetyl-CoA precursor pool or regeneration of NADPH, which increase the sterol pathway flux.","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"67 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80009863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Contracting scars from fibrin drops. 纤维蛋白滴造成的收缩疤痕。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-03-21 DOI: 10.1093/intbio/zyac001
Stephen Robinson, Eric Parigoris, Jonathan Chang, Louise Hecker, Shuichi Takayama
{"title":"Contracting scars from fibrin drops.","authors":"Stephen Robinson,&nbsp;Eric Parigoris,&nbsp;Jonathan Chang,&nbsp;Louise Hecker,&nbsp;Shuichi Takayama","doi":"10.1093/intbio/zyac001","DOIUrl":"https://doi.org/10.1093/intbio/zyac001","url":null,"abstract":"<p><p>This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-β1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"14 1","pages":"1-12"},"PeriodicalIF":2.5,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934703/pdf/zyac001.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10799553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phosphatases are predicted to govern prolactin-mediated JAK–STAT signaling in pancreatic beta cells 预计磷酸酶可调控胰腺β细胞中泌乳素介导的JAK-STAT信号
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-02-01 DOI: 10.1093/intbio/zyac004
Ariella D Simoni,Holly A Huber,Senta K Georgia,Stacey D Finley
{"title":"Phosphatases are predicted to govern prolactin-mediated JAK–STAT signaling in pancreatic beta cells","authors":"Ariella D Simoni,Holly A Huber,Senta K Georgia,Stacey D Finley","doi":"10.1093/intbio/zyac004","DOIUrl":"https://doi.org/10.1093/intbio/zyac004","url":null,"abstract":"Abstract Patients with diabetes are unable to produce a sufficient amount of insulin to properly regulate their blood glucose levels. One potential method of treating diabetes is to increase the number of insulin-secreting beta cells in the pancreas to enhance insulin secretion. It is known that during pregnancy, pancreatic beta cells proliferate in response to the pregnancy hormone, prolactin (PRL). Leveraging this proliferative response to PRL may be a strategy to restore endogenous insulin production for patients with diabetes. To investigate this potential treatment, we previously developed a computational model to represent the PRL-mediated JAK–STAT signaling pathway in pancreatic beta cells. Here, we applied the model to identify the importance of particular signaling proteins in shaping the response of a population of beta cells. We simulated a population of 10 000 heterogeneous cells with varying initial protein concentrations responding to PRL stimulation. We used partial least squares regression to analyze the significance and role of each of the varied protein concentrations in producing the response of the cell. Our regression models predict that the concentrations of the cytosolic and nuclear phosphatases strongly influence the response of the cell. The model also predicts that increasing PRL receptor strengthens negative feedback mediated by the inhibitor suppressor of cytokine signaling. These findings reveal biological targets that can potentially be used to modulate the proliferation of pancreatic beta cells to enhance insulin secretion and beta cell regeneration in the context of diabetes.","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"174 6","pages":"37-48"},"PeriodicalIF":2.5,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From random to predictive: a context-specific interaction framework improves selection of drug protein–protein interactions for unknown drug pathways 从随机到预测:上下文特异性相互作用框架提高了未知药物途径中药物蛋白相互作用的选择
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2022-01-01 DOI: 10.1093/intbio/zyac002
Jennifer L Wilson,Alessio Gravina,Kevin Grimes
{"title":"From random to predictive: a context-specific interaction framework improves selection of drug protein–protein interactions for unknown drug pathways","authors":"Jennifer L Wilson,Alessio Gravina,Kevin Grimes","doi":"10.1093/intbio/zyac002","DOIUrl":"https://doi.org/10.1093/intbio/zyac002","url":null,"abstract":"Abstract With high drug attrition, protein–protein interaction (PPI) network models are attractive as efficient methods for predicting drug outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and they have low precision and prediction performance; performance is often no better than random (AUROC ~0.5). Typically, PPI models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could improve prediction performance. We compared two global approaches—statistical and distance-based—and our novel per-phenotype approach, ‘context-specific interaction’ (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared to 0.51), and a 76–95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"28 5","pages":"13-24"},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. 具有Rho GTPase活性的纳米纤维曲率增加小鼠胚胎成纤维细胞随机迁移速度。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2021-12-31 DOI: 10.1093/intbio/zyab022
Daniel T Bowers, Justin L Brown
{"title":"Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity.","authors":"Daniel T Bowers,&nbsp;Justin L Brown","doi":"10.1093/intbio/zyab022","DOIUrl":"https://doi.org/10.1093/intbio/zyab022","url":null,"abstract":"<p><p>Mechanotransduction arises from information encoded in the shape of materials such as curvature. It induces activation of small GTPase signaling affecting cell phenotypes including differentiation. We carried out a set of preliminary experiments to test the hypothesis that curvature (1/radius) would also affect cell motility due to signal pathway crosstalk. High molecular weight poly (methyl methacrylate) straight nanofibers were electrospun with curvature ranging from 41 to 1 μm-1 and collected on a passivated glass substrate. The fiber curvature increased mouse mesenchymal stem cell aspect ratio (P < 0.02) and decreased cell area (P < 0.01). Despite little effect on some motility patterns such as polarity and persistence, we found selected fiber curvatures can increase normalized random fibroblastic mouse embryonic cell (MEF) migration velocity close to 2.5 times compared with a flat surface (P < 0.001). A maximum in the velocity curve occurred near 2.5 μm-1 and may vary with the time since initiation of attachment to the surface (range of 0-20 h). In the middle range of fiber curvatures, the relative relationship to curvature was similar regardless of treatment with Rho-kinase inhibitor (Y27632) or cdc42 inhibitor (ML141), although it was decreased on most curvatures (P < 0.05). However, below a critical curvature threshold MEFs may not be able to distinguish shallow curvature from a flat surface, while still being affected by contact guidance. The preliminary data in this manuscript suggested the large low curvature fibers were interpreted in a manner similar to a non-curved surface. Thus, curvature is a biomaterial construct design parameter that should be considered when specific biological responses are desired. Statement of integration, innovation, and insight  Replacement of damaged or diseased tissues that cannot otherwise regenerate is transforming modern medicine. However, the extent to which we can rationally design materials to affect cellular outcomes remains low. Knowing the effect of material stiffness and diameter on stem cell differentiation, we investigated cell migration and signaling on fibrous scaffolds. By investigating diameters across orders of magnitude (50-2000 nm), we identified a velocity maximum of ~800 nm. Furthermore, the results suggest large fibers may not be interpreted by single cells as a curved surface. This work presents insight into the design of constructs for engineering tissues.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 12","pages":"295-308"},"PeriodicalIF":2.5,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759537/pdf/zyab022.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10512187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A quantitative view of strategies to engineer cell-selective ligand binding. 设计细胞选择性配体结合策略的定量观点。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2021-12-30 DOI: 10.1093/intbio/zyab019
Zhixin Cyrillus Tan, Brian T Orcutt-Jahns, Aaron S Meyer
{"title":"A quantitative view of strategies to engineer cell-selective ligand binding.","authors":"Zhixin Cyrillus Tan,&nbsp;Brian T Orcutt-Jahns,&nbsp;Aaron S Meyer","doi":"10.1093/intbio/zyab019","DOIUrl":"https://doi.org/10.1093/intbio/zyab019","url":null,"abstract":"<p><p>A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only expressed at subtly different levels relative to off-target cells. More complex binding strategies have been developed to overcome this limitation, including multi-specific and multivalent molecules, creating a combinatorial explosion of design possibilities. Guiding strategies for developing cell-specific binding are critical to employ these tools. Here, we employ a uniquely general multivalent binding model to dissect multi-ligand and multi-receptor interactions. This model allows us to analyze and explore a series of mechanisms to engineer cell selectivity, including mixtures of molecules, affinity adjustments, valency changes, multi-specific molecules and ligand competition. Each of these strategies can optimize selectivity in distinct cases, leading to enhanced selectivity when employed together. The proposed model, therefore, provides a comprehensive toolkit for the model-driven design of selectively binding therapies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 11","pages":"269-282"},"PeriodicalIF":2.5,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730367/pdf/zyab019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10412705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Corrigendum to: A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level. 一种新型双层集成微流体装置,用于单细胞水平的高通量酵母蛋白质组动力学分析。
IF 2.5 4区 生物学
Integrative Biology Pub Date : 2021-12-15 DOI: 10.1093/intbio/zyab021
Kaiyue Chen, Nan Rong, Shujing Wang, Chunxiong Luo
{"title":"Corrigendum to: A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level.","authors":"Kaiyue Chen,&nbsp;Nan Rong,&nbsp;Shujing Wang,&nbsp;Chunxiong Luo","doi":"10.1093/intbio/zyab021","DOIUrl":"https://doi.org/10.1093/intbio/zyab021","url":null,"abstract":"","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 10","pages":"258"},"PeriodicalIF":2.5,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39699687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信