Macrophage circadian rhythms are differentially affected based on stimuli.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Sujeewa S Lellupitiyage Don, Javier A Mas-Rosario, Hui-Hsien Lin, Evelyn M Nguyen, Stephanie R Taylor, Michelle E Farkas
{"title":"Macrophage circadian rhythms are differentially affected based on stimuli.","authors":"Sujeewa S Lellupitiyage Don,&nbsp;Javier A Mas-Rosario,&nbsp;Hui-Hsien Lin,&nbsp;Evelyn M Nguyen,&nbsp;Stephanie R Taylor,&nbsp;Michelle E Farkas","doi":"10.1093/intbio/zyac007","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are white blood cells that play disparate roles in homeostasis and immune responses. They can reprogram their phenotypes to pro-inflammatory (M1) or anti-inflammatory (M2) states in response to their environment. About 8-15% of the macrophage transcriptome has circadian oscillations, including genes closely related to their functioning. As circadian rhythms are associated with cellular phenotypes, we hypothesized that polarization of macrophages to opposing subtypes might differently affect their circadian rhythms. We tracked circadian rhythms in RAW 264.7 macrophages using luminescent reporters. Cells were stably transfected with Bmal1:luc and Per2:luc reporters, representing positive and negative components of the molecular clock. Strength of rhythmicity, periods and amplitudes of time series were assessed using multiple approaches. M1 polarization decreased amplitudes and rhythmicities of Bmal1:luc and Per2:luc, but did not significantly affect periods, while M2 polarization increased periods but caused no substantial alterations to amplitudes or rhythmicity. As macrophage phenotypes are also altered in the presence of cancer cells, we tested circadian effects of conditioned media from mouse breast cancer cells. Media from highly aggressive 4T1 cells caused loss of rhythmicity, while media from less aggressive EMT6 cells yielded no changes. As macrophages play roles in tumors, and oncogenic features are associated with circadian rhythms, we tested whether conditioned media from macrophages could alter circadian rhythms of cancer cells. Conditioned media from RAW 264.7 cells resulted in lower rhythmicities and periods, but higher amplitudes in human osteosarcoma, U2OS-Per2:luc cells. We show that phenotypic changes in macrophages result in altered circadian characteristics and suggest that there is an association between circadian rhythms and macrophage polarization state. Additionally, our data demonstrate that macrophages treated with breast cancer-conditioned media have circadian phenotypes similar to those of the M1 subtype, and cancer cells treated with macrophage-conditioned media have circadian alterations, providing insight to another level of cross-talk between macrophages and cancer.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"14 3","pages":"62-75"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175639/pdf/zyac007.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyac007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages are white blood cells that play disparate roles in homeostasis and immune responses. They can reprogram their phenotypes to pro-inflammatory (M1) or anti-inflammatory (M2) states in response to their environment. About 8-15% of the macrophage transcriptome has circadian oscillations, including genes closely related to their functioning. As circadian rhythms are associated with cellular phenotypes, we hypothesized that polarization of macrophages to opposing subtypes might differently affect their circadian rhythms. We tracked circadian rhythms in RAW 264.7 macrophages using luminescent reporters. Cells were stably transfected with Bmal1:luc and Per2:luc reporters, representing positive and negative components of the molecular clock. Strength of rhythmicity, periods and amplitudes of time series were assessed using multiple approaches. M1 polarization decreased amplitudes and rhythmicities of Bmal1:luc and Per2:luc, but did not significantly affect periods, while M2 polarization increased periods but caused no substantial alterations to amplitudes or rhythmicity. As macrophage phenotypes are also altered in the presence of cancer cells, we tested circadian effects of conditioned media from mouse breast cancer cells. Media from highly aggressive 4T1 cells caused loss of rhythmicity, while media from less aggressive EMT6 cells yielded no changes. As macrophages play roles in tumors, and oncogenic features are associated with circadian rhythms, we tested whether conditioned media from macrophages could alter circadian rhythms of cancer cells. Conditioned media from RAW 264.7 cells resulted in lower rhythmicities and periods, but higher amplitudes in human osteosarcoma, U2OS-Per2:luc cells. We show that phenotypic changes in macrophages result in altered circadian characteristics and suggest that there is an association between circadian rhythms and macrophage polarization state. Additionally, our data demonstrate that macrophages treated with breast cancer-conditioned media have circadian phenotypes similar to those of the M1 subtype, and cancer cells treated with macrophage-conditioned media have circadian alterations, providing insight to another level of cross-talk between macrophages and cancer.

Abstract Image

Abstract Image

巨噬细胞的昼夜节律会因刺激而受到不同的影响。
巨噬细胞是在体内平衡和免疫反应中发挥不同作用的白细胞。它们可以根据环境将表型重新编程为促炎(M1)或抗炎(M2)状态。大约8-15%的巨噬细胞转录组具有昼夜节律振荡,包括与其功能密切相关的基因。由于昼夜节律与细胞表型有关,我们假设巨噬细胞向相反亚型的极化可能会对其昼夜节律产生不同的影响。我们使用发光报告子追踪了RAW 264.7巨噬细胞的昼夜节律。用Bmal1:luc和Per2:luc报告子稳定转染细胞,它们代表分子钟的阳性和阴性成分。采用多种方法评估时间序列的节律强度、周期和振幅。M1极化降低了Bmal1:luc和Per2:luc的振幅和节律性,但没有显著影响周期,而M2极化增加了周期,但没有引起振幅或节律性的实质性改变。由于巨噬细胞表型在癌症细胞存在的情况下也会发生改变,我们测试了来自小鼠癌症乳腺细胞的条件培养基的昼夜节律效应。来自高侵袭性4T1细胞的培养基导致节律性丧失,而来自低侵袭性EMT6细胞的培养液没有产生变化。由于巨噬细胞在肿瘤中发挥作用,并且致癌特征与昼夜节律有关,我们测试了来自巨噬细胞的条件培养基是否可以改变癌症细胞的昼夜节律。来自RAW 264.7细胞的条件培养基导致人骨肉瘤U2OS-Per2:luc细胞的节律性和周期较低,但振幅较高。我们发现巨噬细胞的表型变化导致昼夜节律特征的改变,并表明昼夜节律和巨噬细胞极化状态之间存在关联。此外,我们的数据表明,用含乳腺癌条件培养基处理的巨噬细胞具有与M1亚型类似的昼夜节律表型,用含巨噬细胞条件培养基治疗的癌症细胞具有昼夜节律改变,这为巨噬细胞和癌症之间的另一种串扰水平提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信