Annual Review of Materials Research最新文献

筛选
英文 中文
Low-Dimensional and Confined Ice 低维和受限冰
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2023-03-31 DOI: 10.1146/annurev-matsci-080921-101821
Bowen Cui, Peizhen Xu, Xiangzheng Li, Kailong Fan, Xin Guo, Liming Tong
{"title":"Low-Dimensional and Confined Ice","authors":"Bowen Cui, Peizhen Xu, Xiangzheng Li, Kailong Fan, Xin Guo, Liming Tong","doi":"10.1146/annurev-matsci-080921-101821","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080921-101821","url":null,"abstract":"Owing to its unique structure, morphology, and crystal quality, low-dimensional (L-D) ice has attracted increasing attention in recent years. With a size (at least in one dimension) between that of a single water molecule and a snowflake, L-D ice does not only appear as an intermediate state during the dimensional change but can also manifest extraordinary characteristics, from its molecular structures to its physical properties, which offer exciting opportunities for a better understanding and utilization of ice. In this article, we start with a brief introduction to the crystal growth, structure, and typical characterization techniques of ice and then review recent progress in the study of crystal growth, molecular structures, phase morphologies, and physical properties of zero-, one-, and two-dimensional (0-, 1-, and 2D) ice. Extraordinary behaviors of ice in low dimensions and extreme conditions are highlighted. Finally, the future outlook for the physical study and technological applications of L-D ice is briefly discussed. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"26 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81298304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Versatility of Piezoelectric Composites 压电复合材料的多功能性
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2023-03-21 DOI: 10.1146/annurev-matsci-080921-092839
P. Kabakov, Taeyang Kim, Zhenxiang Cheng, Xiaoning Jiang, Shujun Zhang
{"title":"The Versatility of Piezoelectric Composites","authors":"P. Kabakov, Taeyang Kim, Zhenxiang Cheng, Xiaoning Jiang, Shujun Zhang","doi":"10.1146/annurev-matsci-080921-092839","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080921-092839","url":null,"abstract":"Piezoelectric materials possess the capability to interchangeably convert electrical energy into a mechanical response. While current piezoelectric materials exhibit strong properties, known limitations have inhibited further development. This review describes the ability to combine different piezoelectric materials into a composite to create well-rounded properties. The different types of connectivity classes are described as well as important design considerations and theoretical models. The contributions from the active and passive phases are outlined, focusing primarily on ferroelectric ceramics and polymer-based composites. The key advantage of piezoelectric composites is their ability to combine the flexibility of polymers with the high electromechanical coupling and piezoelectric coefficients of ferroelectric ceramics or single crystals appropriate for a variety of applications. Composites are prominent in medical ultrasound imaging and therapy, underwater acoustic sensing, industrial structural health monitoring, energy harvesting, and numerous other emerging applications. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"14 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74995262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Grain Boundary Migration in Polycrystals 多晶中的晶界迁移
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2023-02-28 DOI: 10.1146/annurev-matsci-080921-091511
G. Rohrer, I. Chesser, A. Krause, S. K. Naghibzadeh, Zipeng Xu, K. Dayal, E. Holm
{"title":"Grain Boundary Migration in Polycrystals","authors":"G. Rohrer, I. Chesser, A. Krause, S. K. Naghibzadeh, Zipeng Xu, K. Dayal, E. Holm","doi":"10.1146/annurev-matsci-080921-091511","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080921-091511","url":null,"abstract":"Grain boundaries in polycrystalline materials migrate to reduce the total excess energy. It has recently been found that the factors governing migration rates of boundaries in bicrystals are insufficient to explain boundary migration in polycrystals. We first review our current understanding of the atomistic mechanisms of grain boundary migration based on simulations and high-resolution transmission electron microscopy observations. We then review our current understanding at the continuum scale based on simulations and observations using high-energy diffraction microscopy. We conclude that detailed comparisons of experimental observations with atomistic simulations of migration in polycrystals (rather than bicrystals) are required to better understand the mechanisms of grain boundary migration, that the driving force for grain boundary migration in polycrystals must include factors other than curvature, and that current simulations of grain growth are insufficient for reproducing experimental observations, possibly because of an inadequate representation of the driving force. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"2013 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73984416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Tailor-Made Additives for Melt-Grown Molecular Crystals: Why or Why Not? 为熔融生长的分子晶体定制添加剂:为什么或为什么不?
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2023-02-28 DOI: 10.1146/annurev-matsci-081720-112946
Hengyu Zhou, Julia Sabino, Yongfan Yang, Michael D. Ward, A. Shtukenberg, B. Kahr
{"title":"Tailor-Made Additives for Melt-Grown Molecular Crystals: Why or Why Not?","authors":"Hengyu Zhou, Julia Sabino, Yongfan Yang, Michael D. Ward, A. Shtukenberg, B. Kahr","doi":"10.1146/annurev-matsci-081720-112946","DOIUrl":"https://doi.org/10.1146/annurev-matsci-081720-112946","url":null,"abstract":"Tailor-made additives (TMAs) have found a role in crystal morphology engineering and control through specific binding to crystal surfaces through stereochemical recognition. The utility of TMAs, however, has been largely limited to crystal growth from solutions. In this review, we illustrate examples where TMAs have been used to influence the growth of crystals during cooling of their melts. In solution, the crystal growth driving force is governed by solute supersaturation, which corresponds to the deviation from equilibrium. In growth from melts, however, undercooling is the important thermodynamic parameter responsible for crystallization outcomes, a key difference that can influence the manner in which TMAs affect growth kinetics, crystal morphology, nucleation, enantioselective surface recognition, and the determination of the absolute sense of polar axes. When the crystallization driving force in a melt is small and diffusion is comparatively high, TMAs can exert their influence on well-faceted single crystals with the stereochemical richness observed in solution growth. Under high supercooling, where the driving force is large, ensembles of crystals can grow radially, masking stereochemical information and requiring new optical tools for understanding the influence of TMAs on emerging crystals. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"16 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87798107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Representations of Materials for Machine Learning 机器学习材料的表示
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2023-01-20 DOI: 10.1146/annurev-matsci-080921-085947
James R. Damewood, Jessica Karaguesian, Jaclyn R. Lunger, Aik Rui Tan, M. Xie, Jiayu Peng, Rafael G'omez-Bombarelli
{"title":"Representations of Materials for Machine Learning","authors":"James R. Damewood, Jessica Karaguesian, Jaclyn R. Lunger, Aik Rui Tan, M. Xie, Jiayu Peng, Rafael G'omez-Bombarelli","doi":"10.1146/annurev-matsci-080921-085947","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080921-085947","url":null,"abstract":"High-throughput data generation methods and machine learning (ML) algorithms have given rise to a new era of computational materials science by learning the relations between composition, structure, and properties and by exploiting such relations for design. However, to build these connections, materials data must be translated into a numerical form, called a representation, that can be processed by an ML model. Data sets in materials science vary in format (ranging from images to spectra), size, and fidelity. Predictive models vary in scope and properties of interest. Here, we review context-dependent strategies for constructing representations that enable the use of materials as inputs or outputs for ML models. Furthermore, we discuss how modern ML techniques can learn representations from data and transfer chemical and physical information between tasks. Finally, we outline high-impact questions that have not been fully resolved and thus require further investigation. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"266 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79782596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Polar Metals: Principles and Prospects 极性金属:原理与展望
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2022-10-06 DOI: 10.1146/annurev-matsci-080921-105501
S. Bhowal, N. Spaldin
{"title":"Polar Metals: Principles and Prospects","authors":"S. Bhowal, N. Spaldin","doi":"10.1146/annurev-matsci-080921-105501","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080921-105501","url":null,"abstract":"We review the class of materials known as polar metals, in which polarity and metallicity coexist in the same phase. While the notion of polar metals was first invoked more than 50 years ago, their practical realization has proved challenging since the itinerant carriers required for metallicity tend to screen any polarization. Huge progress has been made in the last decade, with many mechanisms for combining polarity and metallicity proposed and the first examples, LiOsO3 and WTe2, identified experimentally. The availability of polar metallic samples has opened a new paradigm in polar metal research, with implications in the fields of topology, ferroelectricity, magnetoelectricity, spintronics, and superconductivity. Here, we review the principles and techniques that have been developed to design and engineer polar metals and describe some of their interesting properties, with a focus on the most promising directions for future work. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"82 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73223951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mechanical Properties of Metal Nanolaminates 金属纳米层合材料的力学性能
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2022-07-01 DOI: 10.1146/annurev-matsci-081320-031236
I. Beyerlein, Zezhou Li, N. Mara
{"title":"Mechanical Properties of Metal Nanolaminates","authors":"I. Beyerlein, Zezhou Li, N. Mara","doi":"10.1146/annurev-matsci-081320-031236","DOIUrl":"https://doi.org/10.1146/annurev-matsci-081320-031236","url":null,"abstract":"This article reviews recent basic research on two categories of metal-based nanolaminates: those composed of metal/metal constituents and those composed of metal/ceramic constituents. We focus primarily on studies that aim to understand—via experiments, modeling, or both—the biphase interface structure and its role in changing the mechanisms that govern strength and deformability at a fundamental level. We anticipate that, by providing a broad perspective on the latest advances in nanolaminates, this review will aid design of new metallic materials with unprecedented combinations of mechanical and physical properties.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"21 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72809389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Hybrid Improper Ferroelectricity: A Theoretical, Computational, and Synthetic Perspective 杂化不当铁电性:理论、计算与综合的观点
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2022-07-01 DOI: 10.1146/annurev-matsci-080819-010313
N. Benedek, M. Hayward
{"title":"Hybrid Improper Ferroelectricity: A Theoretical, Computational, and Synthetic Perspective","authors":"N. Benedek, M. Hayward","doi":"10.1146/annurev-matsci-080819-010313","DOIUrl":"https://doi.org/10.1146/annurev-matsci-080819-010313","url":null,"abstract":"We review the theoretical, computational, and synthetic literature on hybrid improper ferroelectricity in layered perovskite oxides. Different ferroelectric mechanisms are described and compared, and their elucidation using theory and first-principles calculations is discussed. We also highlight the connections between crystal chemistry and the physical mechanisms of ferroelectricity. The experimental literature on hybrid improper ferroelectrics is surveyed, with a particular emphasis on cation-ordered double perovskites, Ruddlesden–Popper and Dion–Jacobson phases. We discuss preparative routes for synthesizing hybrid improper ferroelectrics in all three families and the conditions under which different phases can be stabilized. Finally, we survey some synthetic opportunities for expanding the family of hybrid improper ferroelectrics.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"5 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90413399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Innovations Toward the Valorization of Plastics Waste 塑料废物增值的创新
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2022-07-01 DOI: 10.1146/annurev-matsci-081320-032344
Z. Hinton, Michael R. Talley, P. Kots, Anne V. Le, Tan Zhang, M. Mackay, Aditya M. Kunjapur, Peng Bai, D. Vlachos, M. Watson, M. Berg, Thomas H. Epps, L. Korley
{"title":"Innovations Toward the Valorization of Plastics Waste","authors":"Z. Hinton, Michael R. Talley, P. Kots, Anne V. Le, Tan Zhang, M. Mackay, Aditya M. Kunjapur, Peng Bai, D. Vlachos, M. Watson, M. Berg, Thomas H. Epps, L. Korley","doi":"10.1146/annurev-matsci-081320-032344","DOIUrl":"https://doi.org/10.1146/annurev-matsci-081320-032344","url":null,"abstract":"Plastics are an extremely important class of materials that are prevalent in all facets of society; however, their widespread use over time, combined with limited end-of-life strategies, has led to increasing levels of waste accumulation. Although currently considered a burden, plastics waste is potentially an untapped feedstock for numerous chemical and manufacturing processes. In this review, we discuss the state of the art of approaches for valorization of plastics waste from a materials research perspective, including previous efforts to utilize plastics waste and recent innovations that have opportunities to add significant value. Although additional progress is necessary, we present several diverse capabilities and strategies for valorization that, when brought together, address end-of-life challenges for plastics at every stage of design and product consumption. In short, a materials research–based framework offers a unique perspective to address the urgent issues posed by plastics, unlocking the potential of polymers and plastics waste.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"45 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72524616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Biomineralized Materials for Sustainable and Durable Construction 可持续和耐用建筑的生物矿化材料
IF 9.7 2区 材料科学
Annual Review of Materials Research Pub Date : 2022-07-01 DOI: 10.1146/annurev-matsci-081720-105303
Danielle N. Beatty, Sarah L. Williams, W. Srubar
{"title":"Biomineralized Materials for Sustainable and Durable Construction","authors":"Danielle N. Beatty, Sarah L. Williams, W. Srubar","doi":"10.1146/annurev-matsci-081720-105303","DOIUrl":"https://doi.org/10.1146/annurev-matsci-081720-105303","url":null,"abstract":"Portland cement concrete, the most used manufactured material in the world, is a significant contributor to anthropogenic carbon dioxide (CO2) emissions. While strategies such as point-source CO2 capture, renewable fuels, alternative cements, and supplementary cementitious materials can yield substantial reductions in cement-related CO2 emissions, emerging biocement technologies based on the mechanisms of microbial biomineralization have the potential to radically transform the industry. In this work, we present a review and meta-analysis of the field of biomineralized building materials and their potential to improve the sustainability and durability of civil infrastructure. First, we review the mechanisms of microbial biomineralization, which underpin our discussion of current and emerging biomineralized material technologies and their applications within the construction industry. We conclude by highlighting the technical, economic, and environmental challenges that must be addressed before new, innovative biomineralized material technologies can scale beyond the laboratory.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"2012 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73431191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信