Antioxidants & redox signaling最新文献

筛选
英文 中文
Nicotinamide Adenine Dinucleotide Precursor Supplementation Modulates Neurite Complexity and Survival in Motor Neurons from Amyotrophic Lateral Sclerosis Models. 补充 NAD+ 前体可调节 ALS 模型运动神经元的神经元复杂性和存活率。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2024-07-08 DOI: 10.1089/ars.2023.0360
Haylee L Hamilton, Mahbuba Akther, Shaheer Anis, Christopher B Colwell, Marcelo R Vargas, Mariana Pehar
{"title":"Nicotinamide Adenine Dinucleotide Precursor Supplementation Modulates Neurite Complexity and Survival in Motor Neurons from Amyotrophic Lateral Sclerosis Models.","authors":"Haylee L Hamilton, Mahbuba Akther, Shaheer Anis, Christopher B Colwell, Marcelo R Vargas, Mariana Pehar","doi":"10.1089/ars.2023.0360","DOIUrl":"10.1089/ars.2023.0360","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Increasing nicotinamide adenine dinucleotide (NAD<sup>+</sup>) availability has been proposed as a therapeutic approach to prevent neurodegeneration in amyotrophic lateral sclerosis (ALS). Accordingly, NAD<sup>+</sup> precursor supplementation appears to exert neuroprotective effects in ALS patients and mouse models. The mechanisms mediating neuroprotection remain uncertain but could involve changes in multiple cell types. We investigated a potential direct effect of the NAD<sup>+</sup> precursor nicotinamide mononucleotide (NMN) on the health of cultured induced pluripotent stem cell (iPSC)-derived human motor neurons and in motor neurons isolated from two ALS mouse models, that is, mice overexpressing wild-type transactive response DNA binding protein-43 (TDP-43) or the ALS-linked human superoxide dismutase 1 with the G93A mutation (hSOD1<sup>G93A</sup>). <b><i>Results:</i></b> NMN treatment increased the complexity of neuronal processes in motor neurons isolated from both mouse models and in iPSC-derived human motor neurons. In addition, NMN prevented neuronal death induced by trophic factor deprivation. In mouse and human motor neurons expressing ALS-linked mutant superoxide dismutase 1, NMN induced an increase in glutathione levels, but this effect was not observed in nontransgenic or TDP-43 overexpressing motor neurons. In contrast, NMN treatment normalized the TDP-43 cytoplasmic mislocalization induced by its overexpression. <b><i>Innovation:</i></b> NMN can directly act on motor neurons to increase the growth and complexity of neuronal processes and prevent the death induced by trophic factor deprivation. <b><i>Conclusion:</i></b> Our results support a direct beneficial effect of NAD<sup>+</sup> precursor supplementation on the maintenance of the neuritic arbor in motor neurons. Importantly, this was observed in motor neurons isolated from two different ALS models, with and without involvement of TDP-43 pathology, supporting its therapeutic potential in sporadic and familial ALS. <i>Antioxid. Redox Signal.</i> 41, 573-589.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"573-589"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does NLRP1 Inflammasome Activation in Immune Cells in Kidney Transplantation Relate with Donor Organ Age? 肾移植过程中免疫细胞中 NLRP1 炎症小体的激活与供体器官年龄有关吗?
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2024-04-18 DOI: 10.1089/ars.2024.0588
Juan Miguel Suarez-Rivero, Juan López-Pérez, Antonio Astorga-Gamaza, Inés Muela-Zarzuela, Raquel de la Varga-Martínez, Aurora Aguilera, Teresa Garcia, Auxiliadora Mazuecos, Mario D Cordero
{"title":"Does NLRP1 Inflammasome Activation in Immune Cells in Kidney Transplantation Relate with Donor Organ Age?","authors":"Juan Miguel Suarez-Rivero, Juan López-Pérez, Antonio Astorga-Gamaza, Inés Muela-Zarzuela, Raquel de la Varga-Martínez, Aurora Aguilera, Teresa Garcia, Auxiliadora Mazuecos, Mario D Cordero","doi":"10.1089/ars.2024.0588","DOIUrl":"10.1089/ars.2024.0588","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"479-487"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging and Antithrombotic Treatment. 衰老和抗血栓治疗。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2023-10-25 DOI: 10.1089/ars.2023.0373
Emanuele Valeriani, Simona Bartimoccia, Pasquale Pignatelli, Daniele Pastori
{"title":"Aging and Antithrombotic Treatment.","authors":"Emanuele Valeriani, Simona Bartimoccia, Pasquale Pignatelli, Daniele Pastori","doi":"10.1089/ars.2023.0373","DOIUrl":"10.1089/ars.2023.0373","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Several aging-related pathophysiological mechanisms have been described to contribute to increased thrombotic risk in the elderly, including oxidative stress, endothelial dysfunction, and platelet and coagulation cascade activation. Antithrombotic treatment in the elderly should be individualized. <b><i>Recent Advances:</i></b> Recent studies have clarified some pathophysiological mechanisms of enhanced oxidative stress and thrombotic alterations in older adults. In the last decade, randomized trials have evaluated different antithrombotic strategies to reduce the risk of cardiovascular events in these patients. <b><i>Critical Issues:</i></b> The proportion of elderly patients included in clinical trials is generally low, thus not reflecting the daily clinical practice. There is no consensus on the most appropriate antithrombotic treatment in the elderly, also considering that bleeding risk management may be challenging in this high-risk subgroup of patients. Routine antiplatelet treatment is not a valid strategy for the primary prevention of cardiovascular events given the associated high risk of bleeding. In elderly patients with acute coronary syndrome, low-dose prasugrel or clopidogrel, shorter dual antiplatelet therapy, and no pretreatment before stent placement should be considered. Advanced age should not be the only reason for the underuse of oral anticoagulation in patients with atrial fibrillation, with direct oral anticoagulants preferred over warfarin for stroke prevention. Instead, a case-by-case clinical evaluation is warranted based on patient's bleeding risk also. <b><i>Future Directions:</i></b> There is a need for a structured tailored approach to manage thrombotic risk in elderly patients. The choice of the most appropriate antithrombotic treatment should balance efficacy and safety to reduce the risk of bleeding.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"542-556"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41108892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Antioxidants & Redox Signaling. 罗莎琳德-富兰克林学会自豪地宣布 2023 年抗氧化剂和氧化还原信号奖得主。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 DOI: 10.1089/ars.2024.12795.rfs2023
Anita Öst
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>Antioxidants & Redox Signaling</i>.","authors":"Anita Öst","doi":"10.1089/ars.2024.12795.rfs2023","DOIUrl":"https://doi.org/10.1089/ars.2024.12795.rfs2023","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":"41 7-9","pages":"429"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. 神经退行性疾病中的 NADPH 氧化酶:机制与治疗机会》。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2024-07-10 DOI: 10.1089/ars.2023.0002
Mariana B Fiadeiro, João C Diogo, Ana A Silva, Yoon-Seong Kim, Ana C Cristóvão
{"title":"NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities.","authors":"Mariana B Fiadeiro, João C Diogo, Ana A Silva, Yoon-Seong Kim, Ana C Cristóvão","doi":"10.1089/ars.2023.0002","DOIUrl":"10.1089/ars.2023.0002","url":null,"abstract":"<p><p><b><i>Significance:</i></b> The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. <b><i>Recent advances:</i></b> NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. <b><i>Critical issues:</i></b> Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. <b><i>Future directions:</i></b> It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. <i>Antioxid. Redox Signal.</i> 41, 522-541.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"522-541"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Synthesized Cyclohexane-Hydroxytyrosol Derivative Suppresses Ovarian Cancer Cell Growth Through Inducing Reactive Oxidative Species and Blocking Autophagic Flux. 一种新合成的环己烷-羟基酪醇衍生物通过诱导 ROS 和阻断自噬通量抑制卵巢癌细胞的生长。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2024-03-27 DOI: 10.1089/ars.2023.0400
Guanfei Zhang, Min Wang, Yilin Gao, Aikaterini Christina Komianou, Eleftheria A Georgiou, Yan Wang, Yezi Zheng, Jiankang Liu, Ioannis K Kostakis, Lin Zhao
{"title":"A Novel Synthesized Cyclohexane-Hydroxytyrosol Derivative Suppresses Ovarian Cancer Cell Growth Through Inducing Reactive Oxidative Species and Blocking Autophagic Flux.","authors":"Guanfei Zhang, Min Wang, Yilin Gao, Aikaterini Christina Komianou, Eleftheria A Georgiou, Yan Wang, Yezi Zheng, Jiankang Liu, Ioannis K Kostakis, Lin Zhao","doi":"10.1089/ars.2023.0400","DOIUrl":"10.1089/ars.2023.0400","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"430-461"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. 干预芦笋素可减轻血管损伤中的氧化应激和新生血管形成。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 Epub Date: 2024-07-10 DOI: 10.1089/ars.2023.0383
Fen Zheng, Chao Ye, Jian-Zhen Lei, Rui Ge, Na Li, Jin-Hua Bo, Ai-Dong Chen, Feng Zhang, Hong Zhou, Jue-Jin Wang, Qi Chen, Yue-Hua Li, Guo-Qing Zhu, Ying Han
{"title":"Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury.","authors":"Fen Zheng, Chao Ye, Jian-Zhen Lei, Rui Ge, Na Li, Jin-Hua Bo, Ai-Dong Chen, Feng Zhang, Hong Zhou, Jue-Jin Wang, Qi Chen, Yue-Hua Li, Guo-Qing Zhu, Ying Han","doi":"10.1089/ars.2023.0383","DOIUrl":"10.1089/ars.2023.0383","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. <b><i>Methods:</i></b> Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. <b><i>Results:</i></b> Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. <b><i>Innovation and Conclusion:</i></b> Asprosin promotes oxidative stress, proliferation, and migration of VSMCs <i>via</i> TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury. <i>Antioxid. Redox Signal.</i> 41, 488-504.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"488-504"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Excessive Mitochondrial Fission in Seawater Immersion Aggravated Hemorrhagic Shock-Induced Cardiac Dysfunction and the Protective Effect of Mitochondrial Division Inhibitor-1. 线粒体过度裂变在海水浸泡加重失血性休克诱导的心脏损伤中的作用以及 Mdivi-1 的保护作用。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-09-01 DOI: 10.1089/ars.2022.0167
Yanli Liu, Yue Wu, Yu Zhu, Qinghui Li, Xiaoyong Peng, Zisen Zhang, Lei Liu, Liangming Liu, Tao Li
{"title":"Role of Excessive Mitochondrial Fission in Seawater Immersion Aggravated Hemorrhagic Shock-Induced Cardiac Dysfunction and the Protective Effect of Mitochondrial Division Inhibitor-1.","authors":"Yanli Liu, Yue Wu, Yu Zhu, Qinghui Li, Xiaoyong Peng, Zisen Zhang, Lei Liu, Liangming Liu, Tao Li","doi":"10.1089/ars.2022.0167","DOIUrl":"10.1089/ars.2022.0167","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Seawater immersion significantly aggravated organ dysfunction following hemorrhagic shock, leading to higher mortality rate. However, the effective treatment is still unavailable in clinic. Mitochondria were involved in the onset and development of multiple organ function disorders; whether mitochondria participate in the cardiac dysfunction following seawater immersion combined with hemorrhagic shock remains poorly understood. Hence, we investigated the role and possible mechanism of mitochondria in seawater immersion combined with hemorrhage shock-induced cardiac dysfunction. <b><i>Results:</i></b> Mitochondrial fission protein dynamin-related protein 1 (Drp1) was activated and translocated from the cytoplasm to mitochondria in the heart following seawater immersion combined with hemorrhagic shock, leading to excessive mitochondrial fission. Excessive mitochondrial fission disrupted mitochondrial function and structure and activated mitophagy and apoptosis. At the same time, excessive mitochondrial fission resulted in disturbance of myocardial structure and hemodynamic disorders and ultimately provoked multiple organ dysfunction and high mortality. Further studies showed that the mitochondrial division inhibitor mitochondrial division inhibitor-1 can significantly reverse Drp1 mitochondrial translocation and inhibit mitochondrial fragmentation, reactive oxygen species (ROS) accumulation, mitophagy, and apoptosis and then protect circulation and vital organ functions, prolonging animal survival. <b><i>Innovation:</i></b> Our findings indicate that Drp1-mediated mitochondrial fission could be a novel therapeutic targets for the treatment of seawater immersion combined with hemorrhagic shock. <b><i>Conclusion:</i></b> Drp1 mitochondrial translocation played an important role in the cardiac dysfunction after seawater immersion combined with hemorrhage shock. Drp1-mediated excessive mitochondrial fission leads to cardiac dysfunction due to the mitochondrial structure and bioenergetics impairment.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"462-478"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling. 高尿酸通过 ROS-GPX4 信号协调铁氧化促进心肌病的发生
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-28 DOI: 10.1089/ars.2023.0473
Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng
{"title":"High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling.","authors":"Chenxi Xu, Mengni Wu, Wei Yu, De Xie, Qiang Wang, Binyang Chen, Yuemei Xi, Linqian Yu, Yunbo Yan, Tetsuya Yamamoto, Hidenori Koyama, Hong Zhao, Jidong Cheng","doi":"10.1089/ars.2023.0473","DOIUrl":"10.1089/ars.2023.0473","url":null,"abstract":"<p><p><b><i>Aims:</i></b> High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. <b><i>Results:</i></b> We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). <i>N</i>-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. <b><i>Innovation:</i></b> We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. <b><i>Conclusions:</i></b> Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. <i>Antioxid. Redox Signal.</i> 00, 00-00.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury. HIF-1α/BNIP3通过自噬介导的内质网降解可防止缺血再灌注引起的急性肾损伤。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-28 DOI: 10.1089/ars.2023.0467
Hao Zhao, Ming Yang, Yachun Han, Na Jiang, Yan Liu, Chenrui Li, Jinfei Yang, Shilu Luo, Chongbin Liu, Lin Sun, Fuyou Liu, Yu Liu
{"title":"HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury.","authors":"Hao Zhao, Ming Yang, Yachun Han, Na Jiang, Yan Liu, Chenrui Li, Jinfei Yang, Shilu Luo, Chongbin Liu, Lin Sun, Fuyou Liu, Yu Liu","doi":"10.1089/ars.2023.0467","DOIUrl":"10.1089/ars.2023.0467","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信