Thermophysics and Aeromechanics最新文献

筛选
英文 中文
Numerical simulation of a laminar-turbulent flow past a swept wing under the action of a blowing or suction source 在吹力或吸力源作用下流经后掠翼的层流-湍流的数值模拟
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020057
A. V. Boiko, S. V. Kirilovskiy, T. V. Poplavskaya
{"title":"Numerical simulation of a laminar-turbulent flow past a swept wing under the action of a blowing or suction source","authors":"A. V. Boiko,&nbsp;S. V. Kirilovskiy,&nbsp;T. V. Poplavskaya","doi":"10.1134/S0869864324020057","DOIUrl":"10.1134/S0869864324020057","url":null,"abstract":"<div><p>A method and results of computing a laminar-turbulent flow past a swept wing under a control action generated by a source of blowing or suction from the model surface are presented. Pioneering results on the influence of three-dimensional blowing and suction sources on stability of the boundary layer on a swept wing and distributions of <i>N</i>-factors of various mechanisms of the laminar-turbulent transition aimed at changing its position are obtained by using the LOTRAN 3 software package.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"245 - 254"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid 过冷液体流中瞬态沸腾时气泡相互作用对其特性影响的实验研究
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020100
P. V. Khan, A. A. Levin
{"title":"Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid","authors":"P. V. Khan,&nbsp;A. A. Levin","doi":"10.1134/S0869864324020100","DOIUrl":"10.1134/S0869864324020100","url":null,"abstract":"<div><p>The paper presents the experimental results on transient nucleate boiling on the heater surface with rapidly increasing surface temperature. According to the results of high-speed video recording with a frequency of 180 000 frames per second and a spatial resolution of 5.5 urn per pixel, the input data for existing models of heat transfer during nucleate boiling must be refined to take into account the existence of cluster and pulsating bubbles. It has been established that bubbles, interacting through the exchange of momentum, heat and vapor mass, accelerate activation of neighboring vaporization sites, so the clusters of bubbles can form at the initial stage of covering the heater surface with vapor. The main characteristics of single, cluster and pulsating bubbles have been studied for the wall superheating from 0 to 14 K above the temperature of nucleation beginning and flow subcooling from 23 to 103 K.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"313 - 319"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the thermal inertia of building walls when using phase change materials 使用相变材料提高建筑墙体的热惯性
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020070
M. I. Nizovtsev, A. N. Sterlyagov
{"title":"Increasing the thermal inertia of building walls when using phase change materials","authors":"M. I. Nizovtsev,&nbsp;A. N. Sterlyagov","doi":"10.1134/S0869864324020070","DOIUrl":"10.1134/S0869864324020070","url":null,"abstract":"<div><p>The influence of a thin layer of phase change material (PCM) on the thermal characteristics of the outer wall of a building made of lightweight thermal insulation material was studied numerically. Changes in temperature and heat flux density were analyzed for various locations of a PCM layer in the wall. It is shown that the use of a thin paraffin layer 4 mm thick in a wall made of foamed polyurethane 100 mm thick can reduce the amplitude of heat flux fluctuations on the inner surface of the wall in the summer from 2 to 13 times, depending on the PCM location. The greatest reduction is achieved when installing the PCM in the central area of the wall. Calculations show that when using a PCM in the walls of buildings made of light thermal insulation materials, a positive effect, associated with a 6–8 hour delay in the maximum heat flux entering the room relative to the maximum daily value of the outside air temperature, is observed in the summer.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"273 - 284"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the influence of control surfaces and fuselage on the structure of a separated flow around a flying vehicle model with a classical configuration 研究控制面和机身对经典构型飞行器模型周围分离流结构的影响
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020082
A. M. Pavlenko, E. A. Melnik, N. S. Alpatsky, B. Yu. Zanin
{"title":"Investigation of the influence of control surfaces and fuselage on the structure of a separated flow around a flying vehicle model with a classical configuration","authors":"A. M. Pavlenko,&nbsp;E. A. Melnik,&nbsp;N. S. Alpatsky,&nbsp;B. Yu. Zanin","doi":"10.1134/S0869864324020082","DOIUrl":"10.1134/S0869864324020082","url":null,"abstract":"<div><p>The paper describes the results of an experimental study of the influence of control surfaces and fuselage on the structure of a separated flow around a model of a small-size unmanned flying vehicle with a straight leading edge of the wing. The use of oil-soot visualization and hot-wire anemometry shows that the separation region location depends on the attitude of control surfaces, while the presence of a fuselage leads to reduction of the critical angle of attack.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"285 - 300"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steady and unsteady numerical investigation of mixed convective heat transfer enhancement in a channel with baffles attached to the heated wall 带加热壁挡板的通道中混合对流传热增强的稳定和非稳定数值研究
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020069
H. Toumi, R. Henniche, A. Korichi
{"title":"Steady and unsteady numerical investigation of mixed convective heat transfer enhancement in a channel with baffles attached to the heated wall","authors":"H. Toumi,&nbsp;R. Henniche,&nbsp;A. Korichi","doi":"10.1134/S0869864324020069","DOIUrl":"10.1134/S0869864324020069","url":null,"abstract":"<div><p>Numerical computation of aiding mixed convection and heat transfer characteristics in a channel with a baffled heated wall is carried out in this work. The equations of mass, momentum and energy, alongside the boundary conditions, are solved by the finite volume formulation using the open source OpenFOAM® code. Simulations are accomplished under different parameter combinations, including the Reynolds number, Grashof number, and baffle dimension. The results are presented in terms of streamlines, isotherm contours, Nusselt number, and friction factor. The results obtained revealed that the flow translates from steady to unsteady state at a relatively low value of Reynolds number. The unsteady flow behaviour contributes to improve heat transfer by disturbing the near-wall region. The augmentation of velocity and baffle dimension leads to a notable heat transfer enhancement; however, this enhancement is less sensitive to the heating intensity augmentation.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"255 - 272"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids 多壁碳纳米管添加剂对碳氢化合物基钻井液流变性的影响
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020148
E. I. Lysakova, A. D. Skorobogatova, A. L. Neverov, M. I. Pryazhnikov, A. V. Minakov
{"title":"On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids","authors":"E. I. Lysakova,&nbsp;A. D. Skorobogatova,&nbsp;A. L. Neverov,&nbsp;M. I. Pryazhnikov,&nbsp;A. V. Minakov","doi":"10.1134/S0869864324020148","DOIUrl":"10.1134/S0869864324020148","url":null,"abstract":"<div><p>The paper presents the results of experimental studies on the effect of multi-walled carbon nanotubes (MWCNTs) additives on the viscosity and rheological characteristics of drilling emulsions based on mineral oil. The formulations of typical drilling fluids containing 65% hydrocarbon phase were modified with nanotubes. The mass concentration of nanotubes in emulsion varied from 0.1 to 0.5%. The formulation and method of preparing stable drilling emulsions with MWCNT additives have been proposed. The rheology of drilling emulsions modified with MWCNTs was studied. The dependency of rheological characteristics on the nanotubes concentration was obtained. In general, MWCNT additives can significantly alter the rheological characteristics of drilling hydrocarbon emulsions at lower concentrations compared to the additives in the form of spherical nanoparticles. This is very important for their practical use in industry. The optimal concentration of MWCNTs for controlling the rheological properties of drilling emulsions is about 0.25 wt. %.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"355 - 362"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of superheated steam influence on the content of solid carbon particles during diffusion combustion of liquid hydrocarbon fuel 过热蒸汽对液态碳氢化合物燃料扩散燃烧过程中固体碳颗粒含量的影响分析
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020136
E. P. Kopyev
{"title":"Analysis of superheated steam influence on the content of solid carbon particles during diffusion combustion of liquid hydrocarbon fuel","authors":"E. P. Kopyev","doi":"10.1134/S0869864324020136","DOIUrl":"10.1134/S0869864324020136","url":null,"abstract":"<div><p>The study is aimed at clarifying and revealing the basic principles of the effect of superheated steam and its parameters on the content of solid carbon particles (soot) in intermediate and final combustion products when burning liquid hydrocarbon fuel. Using a laboratory atmospheric atomizing burner, it was determined that there is a significant amount of solid carbon particles at the base of the burner flame. When heated air is used instead of steam, an increase in soot content by ∼75 % is observed. The analysis of the flame glow intensity in a narrow ultraviolet band also showed that in air the glow values are ∼75 % higher than when using superheated steam. At the same time, it has been established that the soot content in the final combustion products is affected only by the parameter of the dynamic effect of a jet, which determines air ejection from the environment both into the gas generation chamber and into the external flame region.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"345 - 354"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the thermophysical characteristics of polymer composites in the curing process 聚合物复合材料在固化过程中的热物理特性建模
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020124
O. S. Dmitriev, A. A. Barsukov, D. Ya. Barinov
{"title":"Modeling the thermophysical characteristics of polymer composites in the curing process","authors":"O. S. Dmitriev,&nbsp;A. A. Barsukov,&nbsp;D. Ya. Barinov","doi":"10.1134/S0869864324020124","DOIUrl":"10.1134/S0869864324020124","url":null,"abstract":"<div><p>Constructing models of thermophysical characteristics of polymer composite materials in the curing process is a highly pressing task that is substantiated in this paper. A mathematical model of hot curing of polymer composites based on a thermosetting resin in a mold is presented. Based on experimental temperature dependences of thermophysical characteristics measured under different conditions, modeling dependences of the volume heat capacity and thermal conductivity of fiber, fabric and granular polymer composites on the degree of cure and resin fraction during curing are obtained, with their distinctive feature being the replacement of the properties of a porous reinforcing filler with those of the cured resin in the model. The results of experiments and calculations are presented. The proposed models of thermophysical characteristics increase the accuracy of process modeling and calculation of optimal temperature-time curing cycles.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"329 - 343"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of helium permeability for silica microspheres 二氧化硅微球的氦渗透性研究
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S0869864324020112
M. V. Frolov, A. S. Vereshchagin, I. V. Kazanin
{"title":"Study of helium permeability for silica microspheres","authors":"M. V. Frolov,&nbsp;A. S. Vereshchagin,&nbsp;I. V. Kazanin","doi":"10.1134/S0869864324020112","DOIUrl":"10.1134/S0869864324020112","url":null,"abstract":"<div><p>This paper presents the study of permeability of helium through walls of hollow glass silica microspheres, which can be used as membranes for gas flow. The study was performed in a special setup for measuring the kinetic sorption curves for helium at given pressure and temperature. A mathematical model based on a mono-dispersion distribution was used for approximating the experimental data. The data was obtained for the temperature range 21.5–110.0 °C. The helium permeability of microsphere walls and the activation energy for helium sorption by microspheres were defined for this temperature range.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"321 - 327"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of the DSMC method for a macroscopic chemical reaction 修改宏观化学反应的 DSMC 方法
IF 0.5 4区 工程技术
Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI: 10.1134/S086986432402015X
R. Zakeri, R. Kamali-Moghadam, M. Mani
{"title":"Modification of the DSMC method for a macroscopic chemical reaction","authors":"R. Zakeri,&nbsp;R. Kamali-Moghadam,&nbsp;M. Mani","doi":"10.1134/S086986432402015X","DOIUrl":"10.1134/S086986432402015X","url":null,"abstract":"<div><p>Considering some limitations of various macroscopic chemical reaction models including the total collision energy (TCE) and general collision energy (GCE) models, the new modification is implemented in the DSMC algorithm for numerical simulation of dissociation of the air along the stagnation line and around a typical hypersonic atmospheric blunt body, STS-2 in un-equilibrium conditions and modified model is compared with others conventional models. Since the TCE and GCE models are dependent on some experimental parameters <i>(A</i> and <i>B</i> in the Arrhenius equation for the reaction rate), also, due to the lack of accuracy of the QK model, modification version of chemical reaction models is presented as a hybrid of modified quantum kinetics (MQK) and modified collision energy (MCE) which this method is able to extract <i>A</i> and <i>B</i> parameters without need of experimental background. The accuracy of the current applied chemical model for the calculation of flow field characteristics is assessed by comparison of their results with other methods (analytical models and available experimental data). The results indicate that the modification of hybrid model with advantages of the independency of the empirical parameters gives more accurate results and provides more accurate solution compared to conventional methods without need of <i>A</i> and <i>B</i> constant experimental parameters.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 2","pages":"363 - 374"},"PeriodicalIF":0.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信