{"title":"Modeling the dynamics of incident droplet interaction with a biphilic surface","authors":"M. M. Vasilev, V. V. Terekhov","doi":"10.1134/S0869864324040073","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulations of droplet interaction dynamics with a biphilic surface are performed using the multi-relaxation-time lattice Boltzmann method (MRT-LBM). The biphilic surface is modeled as a superhydrophilic circular region imposed within a superhydrophobic plane. The study is aimed at considering key aspects of droplet spreading upon an impact at the center of the superhydrophilic spot, droplet rebound, and formation of a residual droplet as the size of the superhydrophilic region is varied. Three characteristic interaction regimes are identified: droplet detachment, transitional regime, and droplet adhesion. Additionally, the velocity fields inside the droplet are analyzed throughout the entire interaction process.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 4","pages":"699 - 709"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324040073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulations of droplet interaction dynamics with a biphilic surface are performed using the multi-relaxation-time lattice Boltzmann method (MRT-LBM). The biphilic surface is modeled as a superhydrophilic circular region imposed within a superhydrophobic plane. The study is aimed at considering key aspects of droplet spreading upon an impact at the center of the superhydrophilic spot, droplet rebound, and formation of a residual droplet as the size of the superhydrophilic region is varied. Three characteristic interaction regimes are identified: droplet detachment, transitional regime, and droplet adhesion. Additionally, the velocity fields inside the droplet are analyzed throughout the entire interaction process.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.